Skip to main content

Research Repository

Advanced Search

The E2.65A mutation disrupts dynamic binding poses of SB269652 at the dopamine D2 and D3 receptors

Verma, Ravi Kumar; Abramyan, Ara M.; Michino, Mayako; Free, R. Benjamin; Sibley, David R.; Javitch, Jonathan A.; Lane, J. Robert; Shi, Lei

The E2.65A mutation disrupts dynamic binding poses of SB269652 at the dopamine D2 and D3 receptors Thumbnail


Ravi Kumar Verma

Ara M. Abramyan

Mayako Michino

R. Benjamin Free

David R. Sibley

Jonathan A. Javitch

Associate Professor

Lei Shi


The dopamine D2 and D3 receptors (D2R and D3R) are important targets for antipsychotics and for the treatment of drug abuse. SB269652, a bitopic ligand that simultaneously binds both the orthosteric binding site (OBS) and a secondary binding pocket (SBP) in both D2R and D3R, was found to be a negative allosteric modulator. Previous studies identified Glu2.65 in the SBP to be a key determinant of both the affinity of SB269652 and the magnitude of its cooperativity with orthosteric ligands, as the E2.65A mutation decreased both of these parameters. However, the proposed hydrogen bond (H-bond) between Glu2.65 and the indole moiety of SB269652 is not a strong interaction, and a structure activity relationship study of SB269652 indicates that this H-bond may not be the only element that determines its allosteric properties. To understand the structural basis of the observed phenotype of E2.65A, we carried out molecular dynamics simulations with a cumulative length of ~77 μs of D2R and D3R wild-type and their E2.65A mutants bound to SB269652. In combination with Markov state model analysis and by characterizing the equilibria of ligand binding modes in different conditions, we found that in both D2R and D3R, whereas the tetrahydroisoquinoline moiety of SB269652 is stably bound in the OBS, the indole-2-carboxamide moiety is dynamic and only intermittently forms H-bonds with Glu2.65. Our results also indicate that the E2.65A mutation significantly affects the overall shape and size of the SBP, as well as the conformation of the N terminus. Thus, our findings suggest that the key role of Glu2.65 in mediating the allosteric properties of SB269652 extends beyond a direct interaction with SB269652, and provide structural insights for rational design of SB269652 derivatives that may retain its allosteric properties.


Verma, R. K., Abramyan, A. M., Michino, M., Free, R. B., Sibley, D. R., Javitch, J. A., …Shi, L. (2018). The E2.65A mutation disrupts dynamic binding poses of SB269652 at the dopamine D2 and D3 receptors. PLoS Computational Biology, 14(1), Article e1005948.

Journal Article Type Article
Acceptance Date Dec 30, 2017
Online Publication Date Jan 16, 2018
Publication Date Jan 16, 2018
Deposit Date Apr 22, 2020
Publicly Available Date May 29, 2020
Journal PLoS Computational Biology
Print ISSN 1553-734X
Electronic ISSN 1553-7358
Publisher Public Library of Science
Peer Reviewed Peer Reviewed
Volume 14
Issue 1
Article Number e1005948
Public URL
Publisher URL


You might also like

Downloadable Citations