Skip to main content

Research Repository

Advanced Search

Protean agonism at the dopamine D2 receptor: (S)-3-(3-hydroxyphenyl)-N-propylpiperidine is an agonist for activation of Go1 but an antagonist/inverse agonist for Gi1,Gi2, and Gi3

Lane, J Robert; Powney, Ben; Wise, Alan; Rees, Steven; Milligan, Graeme


Associate Professor

Ben Powney

Alan Wise

Steven Rees

Graeme Milligan


A range of ligands displayed agonism at the long isoform of the human dopamine D(2) receptor, whether using receptor-G protein fusions or membranes of cells in which pertussis toxin-resistant mutants of individual Galpha(i)-family G proteins could be expressed in an inducible fashion. Varying degrees of efficacy were observed for individual ligands as monitored by their capacity to load [(35)S]GTPgammaS onto each of Galpha(i1),Galpha(i2),Galpha(i3), and Galpha(o1). By contrast, (S)-(-)-3-(3-hydroxyphenyl)-N-propylpiperidine was a partial agonist when Galpha(o1) was the target G protein but an antagonist/inverse agonist at Galpha(i1),Galpha(i2), and Galpha(i3). In ligand binding assays, dopamine identified both high- and low-affinity states at each of the dopamine D(2) receptor-G protein fusion proteins, and the high-affinity state was eliminated by guanine nucleotide. (S)-(-)-3-(3-hydroxyphenyl)-N-propylpiperidine bound to an apparent single state of the constructs in which the D(2) receptor was fused to Galpha(i1),Galpha(i2), or Galpha(i3). However, it bound to distinct high- and low-affinity states of the D(2) receptor-Galpha(o1) fusion, with the high-affinity state being eliminated by guanine nucleotide. Likewise, although dopamine identified guanine nucleotide-sensitive high-affinity states of the D(2) receptor when expression of pertussis toxin-resistant forms of each of Galpha(i1), Galpha(i2), Galpha(i3), and Galpha(o1) was induced, (S)-(-)-3-(3-hydroxyphenyl)-N-propylpiperidine identified a high-affinity site only in the presence of Galpha(o1). p-Tyramine displayed a protean ligand profile similar to that of (S)-(-)-3-(3-hydroxyphenyl)-N-propylpiperidine but with lower potency. These results demonstrate (S)-(-)-3-(3-hydroxyphenyl)-N-propylpiperidine to be a protean agonist at the D(2) receptor and may explain in vivo actions of this ligand.


Lane, J. R., Powney, B., Wise, A., Rees, S., & Milligan, G. (2007). Protean agonism at the dopamine D2 receptor: (S)-3-(3-hydroxyphenyl)-N-propylpiperidine is an agonist for activation of Go1 but an antagonist/inverse agonist for Gi1,Gi2, and Gi3. Molecular Pharmacology, 71(5), 1349-1359.

Journal Article Type Article
Acceptance Date Feb 7, 2007
Online Publication Date Apr 25, 2007
Publication Date May 1, 2007
Deposit Date Apr 22, 2020
Journal Molecular Pharmacology
Print ISSN 0026-895X
Publisher American Society for Pharmacology and Experimental Therapeutics
Peer Reviewed Peer Reviewed
Volume 71
Issue 5
Pages 1349-1359
Public URL
Publisher URL