NIKOLAOS DIAMANTIS NIKOLAOS.DIAMANTIS@NOTTINGHAM.AC.UK
Professor of Pure Mathematics
Hecke operators and derivatives of L-functions
Diamantis, Nikolaos
Authors
Citation
Diamantis, N. (2001). Hecke operators and derivatives of L-functions. Compositio Mathematica, 125(1), 39 - 54. https://doi.org/10.1023/A%3A1002648306247
Journal Article Type | Article |
---|---|
Online Publication Date | Dec 4, 2007 |
Publication Date | 2001-01 |
Deposit Date | Sep 1, 2023 |
Journal | Compositio Mathematica |
Print ISSN | 0010-437X |
Electronic ISSN | 1570-5846 |
Publisher | Foundation Compositio Mathematica |
Peer Reviewed | Peer Reviewed |
Volume | 125 |
Issue | 1 |
Pages | 39 - 54 |
DOI | https://doi.org/10.1023/A%3A1002648306247 |
Public URL | https://nottingham-repository.worktribe.com/output/13181125 |
Publisher URL | https://www.cambridge.org/core/journals/compositio-mathematica/article/hecke-operators-and-derivatives-of-lfunctions/7F1DE9E6325AA83DB18D2C17CB32C25E |
You might also like
A correspondence of modular forms and applications to values of L-series
(2015)
Journal Article
Regularized inner products and errors of modularity
(2016)
Journal Article
Period polynomials, derivatives of L-functions, and zerosof polynomials
(2018)
Journal Article
Holomorphic automorphic forms and cohomology
(2018)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search