Skip to main content

Research Repository

Advanced Search

Soil compaction effects on litter decomposition in an arable field: implications for management of crop residues and headlands

Carlesso, Lea; Beadle, Andrew; Cook, Samantha M.; Evans, Jess; Hartwell, Graham; Ritz, Karl; Sparkes, Debbie; Wu, Lianhai; Murray, Phil J.


Lea Carlesso

Andrew Beadle

Samantha M. Cook

Jess Evans

Graham Hartwell

Karl Ritz

Lianhai Wu

Phil J. Murray


Soil compaction is a major threat to agricultural soils. Heavy machinery is responsible for damaging soil chemical, physical and biological properties. Among these, organic matter decomposition, which is predominantly mediated by the soil biota, is a necessary process since it underpins nutrient cycling and the provision of plant nutrients. Understanding factors which impact the functionality of the biota is therefore necessary to improve agricultural practices. To better understand the effects of compaction on the soil system, we determined the effects of soil bulk density and soil penetration resistance on the decomposition rates of litter in three distinct field zones: a grass margin, sown at the edge of the field adjacent to the crop, tramlines in the crop:margin interface, and crop. Three litters of different quality (ryegrass, straw residues and mixed litter) were buried for 1, 2, 4 and 6 months in litter bags comprising two different mesh sizes (0.02 and 2 mm). Bulk density and soil penetration resistance were greater in the compacted tramline than in the margin or the crop. The greatest amount of litter remaining in the bags after 6 months was found in the tramline, and the least in the grass margin. Differences between treatments increased with burial time. No significant differences in mass loss between the two mesh sizes was detected before the fourth month, implying that microbial activities were the main processes involved in the early stages of decomposition. Decomposition in the tramline was clearly affected by the degradation of soil structure due to heavy compaction. This study shows that soil conditions at the edges of arable fields affect major soil processes such as decomposition. It also reveals the potential to mitigate soil degradation by managing the headland, the crop residues and the machinery traffic in the field.


Carlesso, L., Beadle, A., Cook, S. M., Evans, J., Hartwell, G., Ritz, K., …Murray, P. J. (2019). Soil compaction effects on litter decomposition in an arable field: implications for management of crop residues and headlands. Applied Soil Ecology, 134, 31-37.

Journal Article Type Article
Acceptance Date Oct 6, 2018
Online Publication Date Oct 25, 2018
Publication Date 2019-02
Deposit Date Nov 12, 2018
Publicly Available Date Nov 28, 2018
Journal Applied Soil Ecology
Print ISSN 0929-1393
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 134
Pages 31-37
Keywords Agricultural and Biological Sciences (miscellaneous); Ecology; Soil Science
Public URL
Publisher URL


You might also like

Downloadable Citations