Steffen Gielen
Homogeneous cosmologies as group field theory condensates
Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo
Authors
Daniele Oriti
Lorenzo Sindoni
Abstract
We give a general procedure, in the group field theory (GFT) formalism for quantum gravity, for constructing states that describe macroscopic, spatially homogeneous universes. These states are close to coherent (condensate) states used in the description of Bose-Einstein condensates. The condition on such states to be (approximate) solutions to the quantum equations of motion of GFT is used to extract an effective dynamics for homogeneous cosmologies directly from the underlying quantum theory. The resulting description in general gives nonlinear and nonlocal equations for the ‘condensate wavefunction’ which are analogous to the Gross-Pitaevskii equation in Bose-Einstein condensates. We show the general form of the effective equations for current quantum gravity models, as well as some concrete examples. We identify conditions under which the dynamics becomes linear, admitting an interpretation as a quantum-cosmological Wheeler-DeWitt equation, and give its semiclassical (WKB) approximation in the case of a kinetic term that includes a Laplace-Beltrami operator. For isotropic states, this approximation reproduces the classical Friedmann equation in vacuum with positive spatial curvature. We show how the formalism can be consistently extended from Riemannian signature to Lorentzian signature models, and discuss the addition of matter fields, obtaining the correct coupling of a massless scalar in the Friedmann equation from the most natural extension of the GFT action. We also outline the procedure for extending our condensate states to include cosmological perturbations. Our results form the basis of a general programme for extracting effective cosmological dynamics directly from a microscopic non-perturbative theory of quantum gravity.
Citation
Gielen, S., Oriti, D., & Sindoni, L. (2014). Homogeneous cosmologies as group field theory condensates. Journal of High Energy Physics, 2014(6), Article 013. https://doi.org/10.1007/jhep06%282014%29013
Journal Article Type | Article |
---|---|
Acceptance Date | May 1, 2014 |
Online Publication Date | Jun 3, 2014 |
Publication Date | Jun 30, 2014 |
Deposit Date | Oct 22, 2018 |
Publicly Available Date | Oct 22, 2018 |
Journal | Journal of High Energy Physics |
Publisher | Springer Verlag |
Peer Reviewed | Peer Reviewed |
Volume | 2014 |
Issue | 6 |
Article Number | 013 |
DOI | https://doi.org/10.1007/jhep06%282014%29013 |
Public URL | https://nottingham-repository.worktribe.com/output/1179564 |
Publisher URL | https://link.springer.com/article/10.1007/JHEP06(2014)013 |
Contract Date | Oct 22, 2018 |
Files
Homogeneous cosmologies as group field theory condensates
(1.2 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search