Research Repository

See what's under the surface

Optimal short-time acquisition schemes in high angular resolution diffusion-weighted imaging

Prčkovska, V.; Achterberg, H. C.; Bastiani, M.; Pullens, P.; Balmashnova, E.; ter Haar Romeny, B. M.; Vilanova, A.; Roebroeck, A.

Authors

V. Prčkovska

H. C. Achterberg

M. Bastiani

P. Pullens

E. Balmashnova

B. M. ter Haar Romeny

A. Vilanova

A. Roebroeck

Abstract

This work investigates the possibilities of applying high-angular-resolution-diffusion-imaging- (HARDI-) based methods in a clinical setting by investigating the performance of non-Gaussian diffusion probability density function (PDF) estimation for a range of b-values and diffusion gradient direction tables. It does so at realistic SNR levels achievable in limited time on a high-performance 3T system for the whole human brain in vivo. We use both computational simulations and in vivo brain scans to quantify the angular resolution of two selected reconstruction methods: Q-ball imaging and the diffusion orientation transform. We propose a new analytical solution to the ODF derived from the DOT. Both techniques are analytical decomposition approaches that require identical acquisition and modest postprocessing times and, given the proposed modifications of the DOT, can be analyzed in a similar fashion. We find that an optimal HARDI protocol given a stringent time constraint (48). Our findings generalize to other methods and additional improvements in MR acquisition techniques.

Journal Article Type Article
Publication Date 2013
Journal International Journal of Biomedical Imaging
Print ISSN 1687-4188
Electronic ISSN 1687-4196
Publisher Hindawi Publishing Corporation
Peer Reviewed Peer Reviewed
Volume 2013
Article Number 658583
Pages 1-17
DOI https://doi.org/10.1155/2013/658583
Publisher URL https://www.hindawi.com/journals/ijbi/2013/658583/

Files



Downloadable Citations