Skip to main content

Research Repository

Advanced Search

Shape shifting: Local landmarks interfere with navigation by, and recognition of, global shape

Buckley, Matthew G.; Haselgrove, Mark; Smith, Alastair D.

Shape shifting: Local landmarks interfere with navigation by, and recognition of, global shape Thumbnail


Authors

Matthew G. Buckley

MARK HASELGROVE mark.haselgrove@nottingham.ac.uk
Professor of Experimental Psychology

Alastair D. Smith



Abstract

An influential theory of spatial navigation states that the boundary shape of an environment is preferentially encoded over and above other spatial cues, such that it is impervious to interference from alternative sources of information. We explored this claim with 3 intradimensional–extradimensional shift experiments, designed to examine the interaction of landmark and geometric features of the environment in a virtual navigation task. In Experiments 1 and 2, participants were first required to find a hidden goal using information provided by the shape of the arena or landmarks integrated into the arena boundary (Experiment 1) or within the arena itself (Experiment 2). Participants were then transferred to a different-shaped arena that contained novel landmarks and were again required to find a hidden goal. In both experiments, participants who were navigating on the basis of cues that were from the same dimension that was previously relevant (intradimensional shift) learned to find the goal significantly faster than participants who were navigating on the basis of cues that were from a dimension that was previously irrelevant (extradimensional shift). This suggests that shape information does not hold special status when learning about an environment. Experiment 3 replicated Experiment 2 and also assessed participants’ recognition of the global shape of the navigated arenas. Recognition was attenuated when landmarks were relevant to navigation throughout the experiment. The results of these experiments are discussed in terms of associative and non-associative theories of spatial learning.

Citation

Buckley, M. G., Haselgrove, M., & Smith, A. D. (2014). Shape shifting: Local landmarks interfere with navigation by, and recognition of, global shape. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(2), 492-510. https://doi.org/10.1037/a0034901

Journal Article Type Article
Acceptance Date Sep 20, 2013
Publication Date Mar 1, 2014
Deposit Date Sep 20, 2017
Publicly Available Date Oct 8, 2020
Journal Journal of Experimental Psychology: Learning, Memory, and Cognition
Print ISSN 0278-7393
Electronic ISSN 1939-1285
Publisher American Psychological Association
Peer Reviewed Peer Reviewed
Volume 40
Issue 2
Pages 492-510
DOI https://doi.org/10.1037/a0034901
Public URL https://nottingham-repository.worktribe.com/output/1099851
Publisher URL https://doi.apa.org/fulltext/2013-40558-001.html
PMID 24245537

Files




You might also like



Downloadable Citations