Suzana Aldwaik
Asphericity of positive free product length 4 relative group presentations
Aldwaik, Suzana; Edjvet, Martin; Juhasz, Arye
Authors
Martin Edjvet
Arye Juhasz
Abstract
© 2018 Walter de Gruyter GmbH, Berlin/Boston. Excluding some exceptional cases, we determine the asphericity of the relative presentation P = ,where a, b ∈ G \ {1} and 1 ≤ m ≤ n. If H = ≤ G, the exceptional cases occurwhen a = b2 or when H is isomorphic to C6..
Citation
Aldwaik, S., Edjvet, M., & Juhasz, A. (2019). Asphericity of positive free product length 4 relative group presentations. Forum Mathematicum, 31(1), 49-68. https://doi.org/10.1515/forum-2017-0141
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 27, 2018 |
Online Publication Date | Sep 10, 2018 |
Publication Date | Jan 1, 2019 |
Deposit Date | Aug 20, 2018 |
Publicly Available Date | Jun 10, 2020 |
Journal | Forum Mathematicum |
Print ISSN | 0933-7741 |
Electronic ISSN | 1435-5337 |
Publisher | De Gruyter |
Peer Reviewed | Peer Reviewed |
Volume | 31 |
Issue | 1 |
Pages | 49-68 |
DOI | https://doi.org/10.1515/forum-2017-0141 |
Public URL | https://nottingham-repository.worktribe.com/output/1036931 |
Publisher URL | https://www.degruyter.com/view/j/forum.2019.31.issue-1/forum-2017-0141/forum-2017-0141.xml |
Files
Asphericity of positive free product length 4 relative group presentations
(1.8 Mb)
PDF
AEJ.Asphericity-of-positive-2018
(338 Kb)
PDF
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search