Uwe Aickelin
'Exploiting problem structure in a genetic algorithm approach to a nurse rostering problem'
Aickelin, Uwe; Dowsland, Kathryn
Authors
Kathryn Dowsland
Abstract
There is considerable interest in the use of genetic algorithms to solve problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle the conflict between objectives and constraints that typically occurs in such problems. In order to overcome this, successful implementations frequently make use of problem specific knowledge. This paper is concerned with the development of a GA for a nurse rostering problem at a major UK hospital. The structure of the constraints is used as the basis for a co-evolutionary strategy using co-operating sub-populations. Problem specific knowledge is also used to define a system of incentives and disincentives, and a complementary mutation operator. Empirical results based on 52 weeks of live data show how these features are able to improve an unsuccessful canonical GA to the point where it is able to provide a practical solution to the problem.
Citation
Aickelin, U., & Dowsland, K. (2000). 'Exploiting problem structure in a genetic algorithm approach to a nurse rostering problem'
Journal Article Type | Article |
---|---|
Publication Date | Jan 1, 2000 |
Deposit Date | Oct 24, 2007 |
Publicly Available Date | Oct 24, 2007 |
Journal | Journal of Scheduling, 3 (3) |
Peer Reviewed | Peer Reviewed |
Keywords | manpower scheduling, genetic algorithms, heuristics, co-evolution |
Public URL | https://nottingham-repository.worktribe.com/output/1023541 |
Additional Information | The original publication is available at www.springerlink.com |
Files
00jofs_nurse.pdf
(212 Kb)
PDF
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search