Dr ALEXANDER KASPRZYK A.M.KASPRZYK@NOTTINGHAM.AC.UK
ASSOCIATE PROFESSOR
On the combinatorial classification of toric log del Pezzo surfaces
Kasprzyk, Alexander M.; Kreuzer, Maximilian; Nill, Benjamin
Authors
Maximilian Kreuzer
Benjamin Nill
Abstract
Toric log del Pezzo surfaces correspond to convex lattice polygons containing the origin in their interior and having only primitive vertices. An upper bound on the volume and on the number of boundary lattice points of these polygons is derived in terms of the index l. Techniques for classifying these polygons are also described: a direct classification for index two is given, and a classification for all l<17 is obtained.
Citation
Kasprzyk, A. M., Kreuzer, M., & Nill, B. (2010). On the combinatorial classification of toric log del Pezzo surfaces. LMS Journal of Computation and Mathematics, 13, https://doi.org/10.1112/S1461157008000387
Journal Article Type | Article |
---|---|
Publication Date | Jan 1, 2010 |
Deposit Date | Nov 12, 2015 |
Publicly Available Date | Nov 12, 2015 |
Journal | LMS Journal of Computation and Mathematics |
Electronic ISSN | 1461-1570 |
Publisher | London Mathematical Society |
Peer Reviewed | Peer Reviewed |
Volume | 13 |
DOI | https://doi.org/10.1112/S1461157008000387 |
Public URL | https://nottingham-repository.worktribe.com/output/1012790 |
Publisher URL | http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7229856&fileId=S1461157008000387 |
Related Public URLs | https://www.lms.ac.uk/publications/journals |
Additional Information | Peer-reviewed version of: Alexander M. Kasprzyk, Maximilian Kreuzer and Benjamin Nill (2010). On the combinatorial classification of toric log del Pezzo surfaces. LMS Journal of Computation and Mathematics, 13, pp 33-46. doi:10.1112/S1461157008000387. |
Files
0810.2207v1.pdf
(465 Kb)
PDF
You might also like
Polytopes and machine learning
(2023)
Journal Article
Machine learning detects terminal singularities
(2023)
Presentation / Conference Contribution
Machine learning the dimension of a Fano variety
(2023)
Journal Article
Machine Learning: The Dimension of a Polytope
(2023)
Book Chapter
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search