Professor Stephen Coombes STEPHEN.COOMBES@NOTTINGHAM.AC.UK
PROFESSOR OF APPLIED MATHEMATICS
Professor Stephen Coombes STEPHEN.COOMBES@NOTTINGHAM.AC.UK
PROFESSOR OF APPLIED MATHEMATICS
Carlo Laing
We consider a coarse grained neural field model for synaptic activity in spatially extended cortical tissue that possesses an underlying periodicity in its microstructure. The model is written as an integro-differential equation with periodic modulation of a translationally-invariant spatial kernel. This modulation can have a strong effect on wave propagation through the tissue, including the creation of pulsating fronts with widely-varying speeds, and wave-propagation failure. Here we develop new analysis for the study of such phenomena, using two complementary techniques. The first uses linearized information from the leading edge of a traveling periodic wave to obtain wave speed estimates for pulsating fronts, and the second develops an interface description for waves in the full nonlinear model. For weak modulation and a Heaviside firing rate function the interface dynamics can be analyzed exactly, and gives predictions which are in excellent agreement with direct numerical simulations. Importantly, the interface dynamics description improves upon the standard homogenization calculation, which is restricted to modulation that is both fast and weak.
Coombes, S., & Laing, C. (in press). Pulsating fronts in periodically modulated neural field models. Physical Review E, Article 011912. https://doi.org/10.1103/PhysRevE.83.011912
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 5, 2010 |
Online Publication Date | Jan 21, 2011 |
Deposit Date | Jan 11, 2011 |
Publicly Available Date | Jan 21, 2011 |
Journal | Physical Review E |
Print ISSN | 2470-0045 |
Electronic ISSN | 2470-0053 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Article Number | 011912 |
DOI | https://doi.org/10.1103/PhysRevE.83.011912 |
Public URL | https://nottingham-repository.worktribe.com/output/1010525 |
Publisher URL | https://journals.aps.org/pre/abstract/10.1103/PhysRevE.83.011912 |
Additional Information | Copyright American Physical Society |
modulated.pdf
(478 Kb)
PDF
Oscillatory networks: insights from piecewise-linear modelling
(2024)
Journal Article
Phase and amplitude responses for delay equations using harmonic balance
(2024)
Journal Article
Stability analysis of electrical microgrids and their control systems
(2024)
Journal Article
Insights into oscillator network dynamics using a phase-isostable framework
(2024)
Journal Article
Understanding the effect of white matter delays on large scale brain synchrony
(2024)
Journal Article
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search