Skip to main content

Research Repository

Advanced Search

Small polygons and toric codes

Brown, Gavin; Kasprzyk, Alexander M.

Small polygons and toric codes Thumbnail


Authors

Gavin Brown

Alexander M. Kasprzyk



Abstract

We describe two different approaches to making systematic classifications of plane lattice polygons, and recover the toric codes they generate, over small fields, where these match or exceed the best known minimum distance. This includes a [36,19,12]-code over F_7 whose minimum distance 12 exceeds that of all previously known codes.

Citation

Brown, G., & Kasprzyk, A. M. (2013). Small polygons and toric codes. Journal of Symbolic Computation, 51, https://doi.org/10.1016/j.jsc.2012.07.001

Journal Article Type Article
Publication Date Apr 1, 2013
Deposit Date Nov 12, 2015
Publicly Available Date Nov 12, 2015
Journal Journal of Symbolic Computation
Print ISSN 0747-7171
Electronic ISSN 0747-7171
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 51
DOI https://doi.org/10.1016/j.jsc.2012.07.001
Keywords Lattice polygon, Toric code, Log del Pezzo surface, Minimum distance
Public URL https://nottingham-repository.worktribe.com/output/1002255
Publisher URL http://www.sciencedirect.com/science/article/pii/S0747717112001150
Related Public URLs http://www.journals.elsevier.com/journal-of-symbolic-computation

Files





You might also like



Downloadable Citations