Skip to main content

Research Repository

Advanced Search

Outputs (160)

Lattice Boltzmann parallel simulation of microflow dynamics over structured surfaces (2017)
Journal Article
Zhou, W., Yan, Y., Liu, X., & Liu, B. (in press). Lattice Boltzmann parallel simulation of microflow dynamics over structured surfaces. Advances in Engineering Software, https://doi.org/10.1016/j.advengsoft.2017.02.001

In the present work, a parallel lattice Boltzmann multiphase model was developed to investigate the effects of surface structures on wettabilities and flow dynamics in a microchannel. The theory of wetting transition was firstly discussed. Then three... Read More about Lattice Boltzmann parallel simulation of microflow dynamics over structured surfaces.

A comprehensive study on a novel concentric cylindrical thermoelectric power generation system (2017)
Journal Article
Huang, K., Li, B., Yan, Y., Li, Y., Twaha, S., & Zhu, J. (2017). A comprehensive study on a novel concentric cylindrical thermoelectric power generation system. Applied Thermal Engineering, 117, https://doi.org/10.1016/j.applthermaleng.2017.02.060

This paper presents the novel designs of a concentric cylindrical thermoelectric generator (CCTEG) and an annular thermoelectric module (ATEM). The simulations are carried out to compare the performance of ATEM and the conventional square-shaped ther... Read More about A comprehensive study on a novel concentric cylindrical thermoelectric power generation system.

Thermal performance of ultra-thin flattened heat pipes (2017)
Journal Article
Zhou, W., Xie, P., Li, Y., Yan, Y., & Li, B. (2017). Thermal performance of ultra-thin flattened heat pipes. Applied Thermal Engineering, 117, 773-781. https://doi.org/10.1016/j.applthermaleng.2017.01.089

This study investigates the thermal performance of composite ultra-thin heat pipes (UTHPs). UTHPs are fabricated by flattening cylindrical heat pipes with outer diameter of 2 mm. The thickness and width were 0.8 mm and 2.7 mm, respectively. The compo... Read More about Thermal performance of ultra-thin flattened heat pipes.

Experimental study on combined defrosting performance of heat pump air conditioning system for pure electric vehicle in low temperature (2017)
Journal Article
Zhou, G., Li, H., Liu, E., Li, B., Yan, Y., Chen, T., & Chen, X. (2017). Experimental study on combined defrosting performance of heat pump air conditioning system for pure electric vehicle in low temperature. Applied Thermal Engineering, 116, https://doi.org/10.1016/j.applthermaleng.2017.01.088

The development of defrosting technology is a crucial technical barrier to the application of the heat pump air conditioning system for the pure electric vehicle. The frosting on the air conditioning system significantly affects systematic performanc... Read More about Experimental study on combined defrosting performance of heat pump air conditioning system for pure electric vehicle in low temperature.

CFD modeling of condensation process of water vapor in supersonic flows (2017)
Journal Article
Yang, Y., Walther, J. H., Yan, Y., & Wen, C. (2017). CFD modeling of condensation process of water vapor in supersonic flows. Applied Thermal Engineering, 115, 1357-1362. https://doi.org/10.1016/j.applthermaleng.2017.01.047

The condensation phenomenon of vapor plays an important role in various industries, such as the steam flow in turbines and refrigeration system. A mathematical model is developed to predict the spontaneous condensing phenomenon in the supersonic flow... Read More about CFD modeling of condensation process of water vapor in supersonic flows.

Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model (2016)
Journal Article
Liu, Y., Li, X., Jin, J., Liu, J., Yan, Y., Han, Z., & Ren, L. (2017). Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model. Applied Surface Science, 400, https://doi.org/10.1016/j.apsusc.2016.12.219

Ice accumulation is a thorny problem which may inflict serious damage even disasters in many areas, such as aircraft, power line maintenance, offshore oil platform and locators of ships. Recent researches have shed light on some promising bio-inspire... Read More about Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model.

Lattice Boltzmann simulation of flow and heat transfer in random porous media constructed by simulated annealing algorithm (2016)
Journal Article
Liu, M., Shi, Y., Yan, J., & Yan, Y. (2017). Lattice Boltzmann simulation of flow and heat transfer in random porous media constructed by simulated annealing algorithm. Applied Thermal Engineering, 115, https://doi.org/10.1016/j.applthermaleng.2016.12.107

In this article, the lattice Boltzmann (LB) method for transport phenomena is combined with the simulated annealing (SA) algorithm for digitized porous-medium construction to study flow and heat transfer in random porous media. Importantly, in contra... Read More about Lattice Boltzmann simulation of flow and heat transfer in random porous media constructed by simulated annealing algorithm.

Wetting transition energy curves for a droplet on a square-post patterned surface (2016)
Journal Article
Gong, W., Zu, Y., Chen, S., & Yan, Y. (2017). Wetting transition energy curves for a droplet on a square-post patterned surface. Science Bulletin, 62(2), https://doi.org/10.1016/j.scib.2016.12.003

Due to the property of water repellence, biomimetic superhydrophobic surfaces have been widely applied to green technologies, in turn inducing wider and deeper investigations on superhydrophobic surfaces. Theoretical, experimental and numerical studi... Read More about Wetting transition energy curves for a droplet on a square-post patterned surface.

Three dimensional lattice Boltzmann simulation for mixed convection of nanofluids in the presence of magnetic field (2016)
Journal Article
Zhou, W., Yan, Y., Xie, Y., & Liu, B. (2017). Three dimensional lattice Boltzmann simulation for mixed convection of nanofluids in the presence of magnetic field. International Communications in Heat and Mass Transfer, 80, https://doi.org/10.1016/j.icheatmasstransfer.2016.11.012

In the present study, a three dimensional thermal lattice Boltzmann model was developed to investigate the flow dynamics and mixed convection heat transfer of Al2O3/water nanofluid in a cubic cavity in the presence of magnetic field. The model was fi... Read More about Three dimensional lattice Boltzmann simulation for mixed convection of nanofluids in the presence of magnetic field.

Contrastive study of flow and heat transfer characteristics in a helically coiled tube under uniform heating and one-side heating (2016)
Journal Article
Misurati, K. A., Quan, Y., Gong, W., Xu, G., & Yan, Y. (2017). Contrastive study of flow and heat transfer characteristics in a helically coiled tube under uniform heating and one-side heating. Applied Thermal Engineering, 114, https://doi.org/10.1016/j.applthermaleng.2016.11.168

One-side heated helically coiled tubes, which are generally applied in various industrial applications such as the water cooled wall in power plant boilers though, have not been thoroughly studied. To investigate the flow and heat transfer characteri... Read More about Contrastive study of flow and heat transfer characteristics in a helically coiled tube under uniform heating and one-side heating.