Skip to main content

Research Repository

Advanced Search

Outputs (38)

Long Time Scale Molecular Dynamics Simulation of Magnesium Hydride Dehydrogenation Enabled by Machine Learning Interatomic Potentials (2024)
Journal Article
Morrison, O., Uteva, E., Walker, G. S., Grant, D. M., & Ling, S. (2025). Long Time Scale Molecular Dynamics Simulation of Magnesium Hydride Dehydrogenation Enabled by Machine Learning Interatomic Potentials. ACS Applied Energy Materials, 8(1), 492-502. https://doi.org/10.1021/acsaem.4c02627

Magnesium hydride (MgH2) is a promising material for solid-state hydrogen storage due to its high gravimetric hydrogen capacity as well as the abundance and low cost of magnesium. The material’s limiting factor is the high dehydrogenation temperature... Read More about Long Time Scale Molecular Dynamics Simulation of Magnesium Hydride Dehydrogenation Enabled by Machine Learning Interatomic Potentials.

A density functional theory study of defective and doped structures of MgB2 and their interaction with hydrogen (2024)
Journal Article
Kuganathan, N., Dornheim, M., M. Grant, D., & Ling, S. (2024). A density functional theory study of defective and doped structures of MgB2 and their interaction with hydrogen. Materials Chemistry and Physics, 324, Article 129677. https://doi.org/10.1016/j.matchemphys.2024.129677

The LiBH4+MgH2 system exhibits promising potential for solid-state hydrogen storage, yet the sluggish rehydrogenation of MgB2 poses a significant challenge. In this study, we utilize density functional theory (DFT) simulations to investigate the ener... Read More about A density functional theory study of defective and doped structures of MgB2 and their interaction with hydrogen.

Destabilizing high-capacity high entropy hydrides via earth abundant substitutions: from predictions to experimental validation (2024)
Journal Article
Agafonov, A., Pineda-Romero, N., Witman, M., Nassif, V., Vaughan, G. B., Lei, L., Ling, S., Grant, D. M., Dornheim, M., Allendorf, M., Stavila, V., & Zlotea, C. (2024). Destabilizing high-capacity high entropy hydrides via earth abundant substitutions: from predictions to experimental validation. Acta Materialia, 276, Article 120086. https://doi.org/10.1016/j.actamat.2024.120086

The vast chemical space of high entropy alloys (HEAs) makes trial-and-error experimental approaches for materials discovery intractable and often necessitates data-driven and/or first principles computational insights to successfully target materials... Read More about Destabilizing high-capacity high entropy hydrides via earth abundant substitutions: from predictions to experimental validation.

Modulated Self-Assembly of Catalytically Active Metal–Organic Nanosheets Containing Zr6 Clusters and Dicarboxylate Ligands (2024)
Journal Article
Prasad, R. R. R., Boyadjieva, S. S., Zhou, G., Tan, J., Firth, F. C. N., Ling, S., Huang, Z., Cliffe, M. J., Foster, J. A., & Forgan, R. S. (2024). Modulated Self-Assembly of Catalytically Active Metal–Organic Nanosheets Containing Zr6 Clusters and Dicarboxylate Ligands. ACS Applied Materials and Interfaces, 16(14), 17812–17820. https://doi.org/10.1021/acsami.4c00604

Two-dimensional metal–organic nanosheets (MONs) have emerged as attractive alternatives to their three-dimensional metal–organic framework (MOF) counterparts for heterogeneous catalysis due to their greater external surface areas and higher accessibi... Read More about Modulated Self-Assembly of Catalytically Active Metal–Organic Nanosheets Containing Zr6 Clusters and Dicarboxylate Ligands.

A fast ceramic mixed OH−/H+ ionic conductor for low temperature fuel cells (2024)
Journal Article
Zou, P., Iuga, D., Ling, S., Brown, A. J., Chen, S., Zhang, M., Han, Y., Fortes, A. D., Howard, C. M., & Tao, S. (2024). A fast ceramic mixed OH−/H+ ionic conductor for low temperature fuel cells. Nature Communications, 15(1), Article 909. https://doi.org/10.1038/s41467-024-45060-1

Low temperature ionic conducting materials such as OH− and H+ ionic conductors are important electrolytes for electrochemical devices. Here we show the discovery of mixed OH−/H+ conduction in ceramic materials. SrZr0.8Y0.2O3-δ exhibits a high ionic c... Read More about A fast ceramic mixed OH−/H+ ionic conductor for low temperature fuel cells.

Stoichiometry and annealing condition on hydrogen capacity of TiCr2-x AB2 alloys (2023)
Journal Article
McGrath, A. J., Wadge, M. D., Adams, M., Manickam, K., Ling, S., Walker, G. S., & Grant, D. M. (2024). Stoichiometry and annealing condition on hydrogen capacity of TiCr2-x AB2 alloys. International Journal of Hydrogen Energy, 53, 582-591. https://doi.org/10.1016/j.ijhydene.2023.12.062

This study presents the effect of stoichiometry and annealing condition on Ti–Cr AB2-type hydrogen storage alloys. Prior to annealing the majority phase of the as-cast alloys was the C14 Laves phase, with separate Ti and Cr phases. Annealing treatmen... Read More about Stoichiometry and annealing condition on hydrogen capacity of TiCr2-x AB2 alloys.

High-pressure behavior of the magnetic van der Waals molecular framework Ni(NCS) 2 (2023)
Journal Article
Geers, M., Jarvis, D. M., Liu, C., Saxena, S. S., Pitcairn, J., Myatt, E., Hallweger, S. A., Kronawitter, S. M., Kieslich, G., Ling, S., Cairns, A. B., Daisenberger, D., Fabelo, O., Cañadillas-Delgado, L., & Cliffe, M. J. (2023). High-pressure behavior of the magnetic van der Waals molecular framework Ni(NCS) 2. Physical Review B, 108(14), Article 144439. https://doi.org/10.1103/PhysRevB.108.144439

Two-dimensional materials offer a unique range of magnetic, electronic, and mechanical properties which can be controlled by external stimuli. Pressure is a particularly important stimulus, as it can be achieved readily and can produce large response... Read More about High-pressure behavior of the magnetic van der Waals molecular framework Ni(NCS) 2.

Towards Pareto optimal high entropy hydrides via data-driven materials discovery (2023)
Journal Article
Witman, M. D., Ling, S., Wadge, M., Bouzidi, A., Pineda-Romero, N., Clulow, R., Ek, G., Chames, J. M., Allendorf, E. J., Agarwal, S., Allendorf, M. D., Walker, G. S., Grant, D. M., Sahlberg, M., Zlotea, C., & Stavila, V. (2023). Towards Pareto optimal high entropy hydrides via data-driven materials discovery. Journal of Materials Chemistry A, 11(29), 15878-15888. https://doi.org/10.1039/d3ta02323k

The ability to rapidly screen material performance in the vast space of high entropy alloys is of critical importance to efficiently identify optimal hydride candidates for various use cases. Given the prohibitive complexity of first principles simul... Read More about Towards Pareto optimal high entropy hydrides via data-driven materials discovery.

Modulated self-assembly of hcp topology MOFs of Zr/Hf and the extended 4,4′-(ethyne-1,2-diyl)dibenzoate linker (2023)
Journal Article
Boyadjieva, S. S., Firth, F. C., Alizadeh Kiapi, M. R., Fairen-Jimenez, D., Ling, S., Cliffe, M. J., & Forgan, R. S. (2023). Modulated self-assembly of hcp topology MOFs of Zr/Hf and the extended 4,4′-(ethyne-1,2-diyl)dibenzoate linker. CrystEngComm, 25(14), 2119-2124. https://doi.org/10.1039/d2ce01529c

Careful control of synthetic conditions can enhance the structural diversity of metal–organic frameworks (MOFs) within individual metal-linker combinations. Herein, we show that hcp topology MOFs of both Zr(iv) and Hf(iv), linked by the extended (eth... Read More about Modulated self-assembly of hcp topology MOFs of Zr/Hf and the extended 4,4′-(ethyne-1,2-diyl)dibenzoate linker.

Non-collinear magnetism in the post-perovskite thiocyanate frameworks CsM(NCS)3 (2023)
Journal Article
Geers, M., Lee, J. Y., Ling, S., Fabelo, O., Cañadillas-Delgado, L., & Cliffe, M. J. (2023). Non-collinear magnetism in the post-perovskite thiocyanate frameworks CsM(NCS)3. Chemical Science, 14(13), 3531-3540. https://doi.org/10.1039/d2sc06861c

AMX3 compounds are structurally diverse, a notable example being the post-perovskite structure which adopts a two-dimensional framework with corner- and edge-sharing octahedra. Few molecular post-perovskites are known and of these, none have reported... Read More about Non-collinear magnetism in the post-perovskite thiocyanate frameworks CsM(NCS)3.