Skip to main content

Research Repository

Advanced Search

Outputs (64)

Predictability of higher heating value of biomass feedstocks via proximate and ultimate analyses – A comprehensive study of artificial neural network applications (2022)
Journal Article
Güleç, F., Pekaslan, D., Williams, O., & Lester, E. (2022). Predictability of higher heating value of biomass feedstocks via proximate and ultimate analyses – A comprehensive study of artificial neural network applications. Fuel, 320, Article 123944. https://doi.org/10.1016/j.fuel.2022.123944

Higher heating value (HHV) is a key characteristic for the assessment and selection of biomass feedstocks as a fuel source. The HHV is usually measured using an adiabatic oxygen bomb calorimeter; however, this method can be time consuming and expensi... Read More about Predictability of higher heating value of biomass feedstocks via proximate and ultimate analyses – A comprehensive study of artificial neural network applications.

Upgrading of Low-Grade Colombian Coals via Low-Cost and Sustainable Calcium Nitrate Dense Media Separation (2022)
Journal Article
Williams, O. S. A., Daley, P., Perkins, J., Martinez-Mendoza, K. L., Guerrero-Perrez, J., Mazabuel, L. M. S., Saavedra, E. A. G., Trujillo, M., Barraza-Burgos, J., Barajas, M., Romero, M. H., & Lester, E. H. (2022). Upgrading of Low-Grade Colombian Coals via Low-Cost and Sustainable Calcium Nitrate Dense Media Separation. ACS Omega, 7(4), 3348-3358. https://doi.org/10.1021/acsomega.1c05346

Wet coal beneficiation in Colombia is prohibitive due to the high cost and scarcity of commonly used dense media. The practical value of this study is that it demonstrates for the first time that a common fertilizer, calcium nitrate, can be used in t... Read More about Upgrading of Low-Grade Colombian Coals via Low-Cost and Sustainable Calcium Nitrate Dense Media Separation.

Investigation of the hydrodynamics in the regenerator of fluid catalytic cracking unit integrated by chemical looping combustion (2021)
Journal Article
Güleç, F., Erdogan, A., Clough, P. T., & Lester, E. (2021). Investigation of the hydrodynamics in the regenerator of fluid catalytic cracking unit integrated by chemical looping combustion. Fuel Processing Technology, 223, Article 106998. https://doi.org/10.1016/j.fuproc.2021.106998

Oil refineries are responsible for 4–6% of global CO2 emissions, and 20–35% of these emissions released from the regenerator of Fluid Catalytic Cracking (FCC) units, which are the essential units for the conversion of heavier petroleum residues (vacu... Read More about Investigation of the hydrodynamics in the regenerator of fluid catalytic cracking unit integrated by chemical looping combustion.

Adsorption studies and effect of heat treatment on porous glass microspheres (2021)
Journal Article
Samad, S. A., Arafat, A., Ferrari, R., Gomes, R. L., Lester, E., & Ahmed, I. (2022). Adsorption studies and effect of heat treatment on porous glass microspheres. International Journal of Applied Glass Science, 13(1), 63-81. https://doi.org/10.1111/ijag.16352

This paper investigates the effect of heat treatment on porous glass microspheres produced via a novel flame spheroidization process, followed by exploring their suitability for dye removal from water. The effect of simple use of smaller porogen (≤5 ... Read More about Adsorption studies and effect of heat treatment on porous glass microspheres.

Hydrothermal conversion of different lignocellulosic biomass feedstocks - Effect of the process conditions on hydrochar structures (2021)
Journal Article
Güleç, F., Riesco, L., Williams, O., Kostas, E. T., Samson, A., & Lester, E. (2021). Hydrothermal conversion of different lignocellulosic biomass feedstocks - Effect of the process conditions on hydrochar structures. Fuel, 302, Article 121166. https://doi.org/10.1016/j.fuel.2021.121166

Five biomass feedstocks (Coffee residues, Rice waste, Whitewood, Zilkha black, and Lignin) were hydrothermally processed in a semi-continuous flow rig using 9 different processing conditions (75, 150, 250 °C, and 1, 50, 240 bar). Solid residues produ... Read More about Hydrothermal conversion of different lignocellulosic biomass feedstocks - Effect of the process conditions on hydrochar structures.

YAG thermal barrier coatings deposited by suspension and solution precursor thermal spray (2021)
Journal Article
Owoseni, T. A., Rincon Romero, A., Pala, Z., Venturi, F., Lester, E. H., Grant, D. M., & Hussain, T. (2021). YAG thermal barrier coatings deposited by suspension and solution precursor thermal spray. Ceramics International, 47(17), 23803-23813. https://doi.org/10.1016/j.ceramint.2021.05.087

Yttrium aluminium garnet (YAG) is a promising topcoat material for thermal barrier coatings due to its high temperature stability and better CMAS (calcium-magnesium-alumino-silicate) resistance. YAG topcoats were deposited by suspension and solution... Read More about YAG thermal barrier coatings deposited by suspension and solution precursor thermal spray.

Review of supercritical water gasification with lignocellulosic real biomass as the feedstocks: Process parameters, biomass composition, catalyst development, reactor design and its challenges (2021)
Journal Article
Lee, C. S., Conradie, A. V., & Lester, E. (2021). Review of supercritical water gasification with lignocellulosic real biomass as the feedstocks: Process parameters, biomass composition, catalyst development, reactor design and its challenges. Chemical Engineering Journal, 415, Article 128837. https://doi.org/10.1016/j.cej.2021.128837

Supercritical water gasification (SCWG) is a combined thermal decomposition and hydrolysis process for converting wet biomass feedstock with high water content potentially (80 wt%) to syngas. The process bypasses the need for an energy intensive pre-... Read More about Review of supercritical water gasification with lignocellulosic real biomass as the feedstocks: Process parameters, biomass composition, catalyst development, reactor design and its challenges.

Towards the Continuous Hydrothermal Synthesis of ZnO@Mg2Al-CO3 Core-Shell Composite Nanomaterials (2020)
Journal Article
Clark, I., Smith, J., Gomes, R. L., & Lester, E. (2020). Towards the Continuous Hydrothermal Synthesis of ZnO@Mg2Al-CO3 Core-Shell Composite Nanomaterials. Nanomaterials, 10(10), Article 2052. https://doi.org/10.3390/nano10102052

Core-shell Zinc Oxide/Layered Double Hydroxide (ZnO@LDH) composite nanomaterials have been produced by a one-step continuous hydrothermal synthesis process, in an attempt to further enhance the application potential of layered double hydroxide (LDH)... Read More about Towards the Continuous Hydrothermal Synthesis of ZnO@Mg2Al-CO3 Core-Shell Composite Nanomaterials.

Residual Stress Measurement of Suspension HVOF-Sprayed Alumina Coating via a Hole-Drilling Method (2020)
Journal Article
Owoseni, T. A., Bai, M., Curry, N., Lester, E. H., Grant, D. M., & Hussain, T. (2020). Residual Stress Measurement of Suspension HVOF-Sprayed Alumina Coating via a Hole-Drilling Method. Journal of Thermal Spray Technology, 29(6), 1339–1350. https://doi.org/10.1007/s11666-020-01072-z

The nature and magnitude of residual stresses in thermal-sprayed coatings determine their lifetime and failure mechanisms. The residual stresses of suspension high-velocity oxy-fuel (SHVOF) thermal sprayed alumina (Al2O3) coating were measured with h... Read More about Residual Stress Measurement of Suspension HVOF-Sprayed Alumina Coating via a Hole-Drilling Method.

A Sustainable Chemicals Manufacturing Paradigm Using CO2 and Renewable H2 (2020)
Journal Article
Bommareddy, R. R., Wang, Y., Pearcy, N., Hayes, M., Lester, E., Minton, N. P., & Conradie, A. V. (2020). A Sustainable Chemicals Manufacturing Paradigm Using CO2 and Renewable H2. iScience, 23(6), Article 101218. https://doi.org/10.1016/j.isci.2020.101218

© 2020 The Author(s) The chemical industry must decarbonize to align with UN Sustainable Development Goals. A shift toward circular economies makes CO2 an attractive feedstock for producing chemicals, provided renewable H2 is available through techno... Read More about A Sustainable Chemicals Manufacturing Paradigm Using CO2 and Renewable H2.