Skip to main content

Research Repository

Advanced Search

Outputs (5)

Collagen-like Osteoclast-Associated Receptor (OSCAR)-Binding Motifs Show a Co-Stimulatory Effect on Osteoclastogenesis in a Peptide Hydrogel System (2023)
Journal Article
Vitale, M., Ligorio, C., Richardson, S. M., Hoyland, J. A., & Bella, J. (2023). Collagen-like Osteoclast-Associated Receptor (OSCAR)-Binding Motifs Show a Co-Stimulatory Effect on Osteoclastogenesis in a Peptide Hydrogel System. International Journal of Molecular Sciences, 25(1), Article 445. https://doi.org/10.3390/ijms25010445

Osteoclastogenesis, one of the dynamic pathways underlying bone remodelling, is a complex process that includes many stages. This complexity, while offering a wealth of therapeutic opportunities, represents a substantial challenge in unravelling the... Read More about Collagen-like Osteoclast-Associated Receptor (OSCAR)-Binding Motifs Show a Co-Stimulatory Effect on Osteoclastogenesis in a Peptide Hydrogel System.

Co-assembling living material as an in vitro lung epithelial infection model (2023)
Journal Article
Wu, Y., Romero, M., Robertson, S. N., Fenn, S., Fisher, L., Willingham, I., Martinez Pomares, L., Ligorio, C., Hill, J., Bu, W., Zhou, Z., Wildman, R. D., Ghaemmaghami, A. M., Sun, H., Sun, J., Cámara, M., & Mata, A. (2024). Co-assembling living material as an in vitro lung epithelial infection model. Matter, 7(1), 216-236. https://doi.org/10.1016/j.matt.2023.10.029

Biofilms are robust living 3D materials that play key roles in nature but also cause major problems, such as tolerance to antibiotic treatment. Recreation of these living structures in vitro is critical to understand their biology and develop solutio... Read More about Co-assembling living material as an in vitro lung epithelial infection model.

Nanocrystalline Cellulose as a Versatile Engineering Material for Extrusion-Based Bioprinting (2023)
Journal Article
A. Read, S., Shuen Go, C., J. S. Ferreira, M., Ligorio, C., Kimber, S., G. Dumanli, A., & Domingos, M. (2023). Nanocrystalline Cellulose as a Versatile Engineering Material for Extrusion-Based Bioprinting. Pharmaceutics, 15(10), Article 2432. https://doi.org/10.3390/pharmaceutics15102432

Naturally derived polysaccharide-based hydrogels, such as alginate, are frequently used in the design of bioinks for 3D bioprinting. Traditionally, the formulation of such bioinks requires the use of pre-reticulated materials with low viscosities, wh... Read More about Nanocrystalline Cellulose as a Versatile Engineering Material for Extrusion-Based Bioprinting.

Synthetic extracellular matrices with function-encoding peptides (2023)
Journal Article
Ligorio, C., & Mata, A. (2023). Synthetic extracellular matrices with function-encoding peptides. Nature Reviews Bioengineering, 1, 518–536. https://doi.org/10.1038/s44222-023-00055-3

The communication of cells with their surroundings is mostly encoded in the epitopes of structural and signalling proteins present in the extracellular matrix (ECM). These peptide epitopes can be incorporated in biomaterials to serve as function-enco... Read More about Synthetic extracellular matrices with function-encoding peptides.