Skip to main content

Research Repository

Advanced Search

Outputs (6)

Sustained Release of Dexamethasone from 3D-Printed Scaffolds Modulates Macrophage Activation and Enhances Osteogenic Differentiation (2023)
Journal Article
Majrashi, M., Yang, J., Ghaemmaghami, A., Kotowska, A., Hicks, J. M., & Scurr, D. (2023). Sustained Release of Dexamethasone from 3D-Printed Scaffolds Modulates Macrophage Activation and Enhances Osteogenic Differentiation. ACS Applied Materials and Interfaces, 15(49), 56623–56638. https://doi.org/10.1021/acsami.3c09774

Enhancing osteogenesis via modulating immune cells is emerging as a new approach to address current challenges in repairing bone defects and fractures. However, much remains unknown about the crosstalk between immune cells and osteolineage cells duri... Read More about Sustained Release of Dexamethasone from 3D-Printed Scaffolds Modulates Macrophage Activation and Enhances Osteogenic Differentiation.

Characterisation of bone regeneration in 3D printed ductile PCL/PEG/hydroxyapatite scaffolds with high ceramic microparticle concentrations (2021)
Journal Article
Cao, C., Huang, P., Prasopthum, A., Parsons, A. J., Ai, F., & Yang, J. (2022). Characterisation of bone regeneration in 3D printed ductile PCL/PEG/hydroxyapatite scaffolds with high ceramic microparticle concentrations. Biomaterials Science, 10(1), 138-152. https://doi.org/10.1039/d1bm01645h

3D printed bioactive glass or bioceramic particle reinforced composite scaffolds for bone tissue engineering currently suffer from low particle concentration (<50 wt%) hence low osteoconductivity. Meanwhile, composites with very high inorganic partic... Read More about Characterisation of bone regeneration in 3D printed ductile PCL/PEG/hydroxyapatite scaffolds with high ceramic microparticle concentrations.

Bioinspired Precision Engineering of Three-Dimensional Epithelial Stem Cell Microniches (2020)
Journal Article
Prina, E., Amer, M. H., Sidney, L., Tromayer, M., Moore, J., Liska, R., …Rose, F. R. (2020). Bioinspired Precision Engineering of Three-Dimensional Epithelial Stem Cell Microniches. Advanced Biosystems, 4(6), Article 2000016. https://doi.org/10.1002/adbi.202000016

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Maintenance of the epithelium relies on stem cells residing within specialized microenvironments, known as epithelial crypts. Two-photon polymerization (2PP) is a valuable... Read More about Bioinspired Precision Engineering of Three-Dimensional Epithelial Stem Cell Microniches.

Multi-material 3D bioprinting of porous constructs for cartilage regeneration (2019)
Journal Article
Ruiz-Cantu, L., Gleadall, A., Faris, C., Segal, J., Shakesheff, K., & Yang, J. (2020). Multi-material 3D bioprinting of porous constructs for cartilage regeneration. Materials Science and Engineering: C, 109, Article 110578. https://doi.org/10.1016/j.msec.2019.110578

© 2020 Elsevier B.V. The current gold standard for nasal reconstruction after rhinectomy or severe trauma includes transposition of autologous cartilage grafts in conjunction with coverage using an autologous skin flap. Harvesting autologous cartilag... Read More about Multi-material 3D bioprinting of porous constructs for cartilage regeneration.

Geometry alone influences stem cell differentiation in a precision 3D printed stem cell niche (2018)
Preprint / Working Paper
Prina, E., Sidney, L., Tromayer, M., Moore, J., Liska, R., Bertolin, M., …Rose, F. R. Geometry alone influences stem cell differentiation in a precision 3D printed stem cell niche

Stem cells within epithelial tissues reside in anatomical structures known as crypts that are known to contribute to the mechanical and chemical milieu important for function. To date, epithelial stem cell therapies have largely ignored the niche and... Read More about Geometry alone influences stem cell differentiation in a precision 3D printed stem cell niche.

Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing (2016)
Journal Article
Ruiz-Cantu, L., Gleadall, A., Faris, C., Segal, J., Shakesheff, K., & Yang, J. (2016). Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing. Biofabrication, 8(1), Article 015016. https://doi.org/10.1088/1758-5090/8/1/015016

© 2016 IOP Publishing Ltd. 3D printing is of great interest for tissue engineering scaffolds due to the ability to form complex geometries and control internal structures, including porosity and pore size. The porous structure of scaffolds plays an i... Read More about Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing.