Skip to main content

Research Repository

Advanced Search

Outputs (3)

Root Growth and Development in “Real Life”: Advances and Challenges in Studying Root–Environment Interactions (2025)
Journal Article
Mehra, P., Banda, J., Ogorek, L. L. P., Fusi, R., Castrillo, G., Colombi, T., Pandey, B. K., Sturrock, C. J., Wells, D. M., & Bennett, M. J. (2025). Root Growth and Development in “Real Life”: Advances and Challenges in Studying Root–Environment Interactions. Annual Review of Plant Biology, 76, 18.1–18.26. https://doi.org/10.1146/annurev-arplant-083123-074506

Plant roots play myriad roles that include foraging for resources in complex soil environments. Within this highly dynamic soil environment roots must sense, interact with, and acclimate to factors such as water availability, microbiota, and heteroge... Read More about Root Growth and Development in “Real Life”: Advances and Challenges in Studying Root–Environment Interactions.

Hydraulic flux–responsive hormone redistribution determines root branching (2022)
Journal Article
Mehra, P., Pandey, B. K., Melebari, D., Banda, J., Leftley, N., Couvreur, V., Rowe, J., Anfang, M., De Gernier, H., Morris, E., Sturrock, C. J., Mooney, S. J., Swarup, R., Faulkner, C., Beeckman, T., Bhalerao, R. P., Shani, E., Jones, A. M., Dodd, I. C., Sharp, R. E., …Bennett, M. J. (2022). Hydraulic flux–responsive hormone redistribution determines root branching. Science, 378(6621), 762-768. https://doi.org/10.1126/science.add3771

Plant roots exhibit plasticity in their branching patterns to forage efficiently for heterogeneously distributed resources, such as soil water. The xerobranching response represses lateral root formation when roots lose contact with water. Here, we s... Read More about Hydraulic flux–responsive hormone redistribution determines root branching.

Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms (2022)
Journal Article
Huang, G., Kilic, A., Karady, M., Zhang, J., Mehra, P., Song, X., Sturrock, C. J., Zhu, W., Qin, H., Hartman, S., Schneider, H. M., Bhosale, R., Dodd, I. C., Sharp, R. E., Huang, R., Mooney, S. J., Liang, W., Bennett, M. J., Zhang, D., & Pandey, B. K. (2022). Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms. Proceedings of the National Academy of Sciences, 119(30), Article e2201072119. https://doi.org/10.1073/pnas.2201072119

Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene... Read More about Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms.