Skip to main content

Research Repository

Advanced Search

Outputs (3)

Non-invasive hydrodynamic imaging in plant roots at cellular resolution (2021)
Journal Article
Pascut, F. C., Couvreur, V., Dietrich, D., Leftley, N., Reyt, G., Boursiac, Y., Calvo-Polanco, M., Casimiro, I., Maurel, C., Salt, D. E., Draye, X., Wells, D. M., Bennett, M. J., & Webb, K. F. (2021). Non-invasive hydrodynamic imaging in plant roots at cellular resolution. Nature Communications, 12, Article 4682. https://doi.org/10.1038/s41467-021-24913-z

A key impediment to studying water-related mechanisms in plants is the inability to non-invasively image water fluxes in cells at high temporal and spatial resolution. Here, we report that Raman microspectroscopy, complemented by hydrodynamic modelli... Read More about Non-invasive hydrodynamic imaging in plant roots at cellular resolution.

Root angle in maize influences nitrogen capture and is regulated by calcineurin B-like protein (CBL)-interacting serine/threonine-protein kinase 15 (ZmCIPK15) (2021)
Journal Article
Schneider, H. M., Lor, V. S. N., Hanlon, M. T., Perkins, A., Kaeppler, S. M., Borkar, A. N., Bhosale, R., Zhang, X., Rodriguez, J., Bucksch, A., Bennett, M. J., Brown, K. M., & Lynch, J. P. (2022). Root angle in maize influences nitrogen capture and is regulated by calcineurin B-like protein (CBL)-interacting serine/threonine-protein kinase 15 (ZmCIPK15). Plant, Cell and Environment, 45(3), 837-853. https://doi.org/10.1111/pce.14135

Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water acquisition. A maize diversity panel of 481 genotypes was screened for variation in root ang... Read More about Root angle in maize influences nitrogen capture and is regulated by calcineurin B-like protein (CBL)-interacting serine/threonine-protein kinase 15 (ZmCIPK15).

Plant roots sense soil compaction through restricted ethylene diffusion (2021)
Journal Article
Pandey, B. K., Huang, G., Bhosale, R., Hartman, S., Sturrock, C. J., Jose, L., Martin, O. C., Karady, M., Voesenek, L. A. C. J., Ljung, K., Lynch, J. P., Brown, K. M., Whalley, W. R., Mooney, S. J., Zhang, D., & Bennett, M. J. (2021). Plant roots sense soil compaction through restricted ethylene diffusion. Science, 371(6526), 276-280. https://doi.org/10.1126/science.abf3013

© 2021 The Authors, some rights reserved. Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root gro... Read More about Plant roots sense soil compaction through restricted ethylene diffusion.