Skip to main content

Research Repository

Advanced Search

Outputs (4)

Visual tracking for the recovery of multiple interacting plant root systems from X-ray μCT images (2015)
Journal Article
Mairhofer, S., Johnson, J., Sturrock, C., Bennett, M. J., Mooney, S. J., & Pridmore, T. P. (2016). Visual tracking for the recovery of multiple interacting plant root systems from X-ray μCT images. Machine Vision and Applications, 27(5), 721-734. https://doi.org/10.1007/s00138-015-0733-7

We propose a visual object tracking framework for the extraction of multiple interacting plant root systems from three-dimensional X-ray micro computed tomography images of plants grown in soil. Our method is based on a level set framework guided by... Read More about Visual tracking for the recovery of multiple interacting plant root systems from X-ray μCT images.

Extracting multiple interacting root systems using X-ray microcomputed tomography (2015)
Journal Article
Mairhofer, S., Sturrock, C., Mooney, S. J., Pridmore, T. P., & Bennett, M. J. (2015). Extracting multiple interacting root systems using X-ray microcomputed tomography. Plant Journal, 84(5), 1034-1043. https://doi.org/10.1111/tpj.13047

© 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. Root system interactions and competition for resources are active areas of research that contribute to our understanding of how roots perc... Read More about Extracting multiple interacting root systems using X-ray microcomputed tomography.

The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana (2015)
Journal Article
Voß, U., Wilson, M. H., Kenobi, K., Gould, P. D., Robertson, F. C., Peer, W. A., Lucas, M., Swarup, K., Casimiro, I., Holman, T. J., Wells, D. M., Péret, B., Goh, T., Fukaki, H., Hodgman, T. C., Laplaze, L., Halliday, K. J., Ljung, K., Murphy, A. S., Hall, A. J., …Bennett, M. J. (2015). The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana. Nature Communications, 6, Article 7641. https://doi.org/10.1038/ncomms8641

The endogenous circadian clock enables organisms to adapt their growth and development to environmental changes. Here we describe how the circadian clock is employed to coordinate responses to the key signal auxin during lateral root (LR) emergence.... Read More about The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana.

Plant embryogenesis requires AUX/LAX-mediated auxin influx (2015)
Journal Article
Robert, H. S., Grunewald, W., Sauer, M., Cannoot, B., Soriano, M., Swarup, R., Weijers, D., Bennett, M. J., Boutilier, K., & Friml, J. (2015). Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development, 142(4), 702-711. https://doi.org/10.1242/dev.115832

The plant hormone auxin and its directional transport are known to play a crucial role in defining the embryonic axis and subsequent development of the body plan. Although the role of PIN auxin efflux transporters has been clearly assigned during emb... Read More about Plant embryogenesis requires AUX/LAX-mediated auxin influx.