Skip to main content

Research Repository

Advanced Search

Outputs (18)

Flexible Selenium Nanowires with Tuneable Electronic Bandgaps (2025)
Journal Article
Cull, W. J., Ramasse, Q. M., Biskupek, J., Rance, G. A., Cardillo‐Zallo, I., Weare, B. L., Fay, M. W., Roy Whitney, R., Scammell, L. R., Alves Fernandes, J., Kaiser, U., Patanè, A., & Khlobystov, A. N. (2025). Flexible Selenium Nanowires with Tuneable Electronic Bandgaps. Advanced Materials, Article 2501821. https://doi.org/10.1002/adma.202501821

Manipulating semiconductor properties without altering their chemical composition holds promise for electronic and optical materials. However, linking atomic positions in nanomaterials to their functional properties is challenging due to their polydi... Read More about Flexible Selenium Nanowires with Tuneable Electronic Bandgaps.

A descriptor guiding the selection of catalyst supports for ammonia synthesis (2025)
Journal Article
Weilhard, A., Popov, I., Kohlrausch, E. C., Aliev, G. N., Blankenship, L. S., Norman, L. T., Ghaderzadeh, S., Smith, L., Isaacs, M., O'Shea, J., Lanterna, A. E., Theis, W., Morgan, D., Hutchings, G. J., Besley, E., Khlobystov, A. N., & Alves Fernandes, J. (2025). A descriptor guiding the selection of catalyst supports for ammonia synthesis. Chemical Science, 16(11), 4851-4859. https://doi.org/10.1039/d4sc08253b

The efforts to increase the active surface area of catalysts led to reduction of metal particle size, down to single metal atoms. This results in increasing importance of support-metal interactions. We demonstrate the mechanisms through which the sup... Read More about A descriptor guiding the selection of catalyst supports for ammonia synthesis.

Structure and chemical composition of the Mg electrode during cycling in a simple glyme electrolyte (2024)
Journal Article
Dimogiannis, K., Sankowski, A., Holc, C., Parmenter, C. D., Newton, G. N., Walsh, D. A., O'Shea, J., Khlobystov, A. N., & Johnson, L. R. (2024). Structure and chemical composition of the Mg electrode during cycling in a simple glyme electrolyte. Energy Storage Materials, 67, Article 103280. https://doi.org/10.1016/j.ensm.2024.103280

The volumetric energy density of magnesium exceeds that of lithium, making magnesium batteries particularly promising for next-generation energy storage. However, electrochemical cycling of magnesium electrodes in common battery electrolytes is coulo... Read More about Structure and chemical composition of the Mg electrode during cycling in a simple glyme electrolyte.

Direct Deposition of Copper Atoms onto Graphitic Step Edges Lowers Overpotential and Improves Selectivity of Electrocatalytic CO2 Reduction (2024)
Preprint / Working Paper
Thangamuthu, M., Burwell, T., Aliev, G., Ghaderzadeh, S., Kohlrausch, E., Chen, Y., Theis, W., Norman, L., Fernandes, J., Besley, E., Licence, P., & Khlobystov, A. Direct Deposition of Copper Atoms onto Graphitic Step Edges Lowers Overpotential and Improves Selectivity of Electrocatalytic CO2 Reduction

Minimizing our reliance on bulk precious metals is to increase the fraction of surface atoms and improve the metal-support interface. In this work, we employ a solvent/ligand/counterion-free method to deposit copper in the atomic form directly onto a... Read More about Direct Deposition of Copper Atoms onto Graphitic Step Edges Lowers Overpotential and Improves Selectivity of Electrocatalytic CO2 Reduction.

Graphene nanoribbons with hBN passivated edges grown by high-temperature molecular beam epitaxy (2023)
Journal Article
Bradford, J., Cheng, T. S., James, T. S., Khlobystov, A. N., Mellor, C. J., Watanabe, K., Taniguchi, T., Novikov, S. V., & Beton, P. H. (2023). Graphene nanoribbons with hBN passivated edges grown by high-temperature molecular beam epitaxy. 2D Materials, 10(3), Article 035035. https://doi.org/10.1088/2053-1583/acdefc

Integration of graphene and hexagonal boron nitride (hBN) in lateral heterostructures has provided a route to broadly engineer the material properties by quantum confinement of electrons or introduction of novel electronic and magnetic states at the... Read More about Graphene nanoribbons with hBN passivated edges grown by high-temperature molecular beam epitaxy.

Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium–gold nanoparticle coarsening in the hydrogenation of cinnamaldehyde (2023)
Journal Article
Pinto, J., Weilhard, A., Norman, L. T., Lodge, R. W., Rogers, D. M., Gual, A., Cano, I., Khlobystov, A. N., Licence, P., & Alves Fernandes, J. (2023). Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium–gold nanoparticle coarsening in the hydrogenation of cinnamaldehyde. Catalysis Science and Technology, https://doi.org/10.1039/d3cy00289f

In this work, we demonstrate that the synergistic effect of PdAu nanoparticles (NPs) in hydrogenation reactions is not only related to high activity but also to their stability when compared to Pd mono-metallic NPs. To demonstrate this, a series of m... Read More about Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium–gold nanoparticle coarsening in the hydrogenation of cinnamaldehyde.

Subnanometer-Wide Indium Selenide Nanoribbons (2023)
Journal Article
Cull, W. J., Skowron, S. T., Hayter, R., Stoppiello, C. T., Rance, G. A., Biskupek, J., Kudrynskyi, Z. R., Kovalyuk, Z. D., Allen, C. S., Slater, T. J. A., Kaiser, U., Patanè, A., & Khlobystov, A. N. (2023). Subnanometer-Wide Indium Selenide Nanoribbons. ACS Nano, 17(6), 6062-6072. https://doi.org/10.1021/acsnano.3c00670

Indium selenides (InxSey) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when confined to two dimensions (2D). In th... Read More about Subnanometer-Wide Indium Selenide Nanoribbons.

Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response (2022)
Journal Article
Wadge, M. D., Bird, M. A., Sankowski, A., Constantin, H., Fay, M. W., Cooper, T. P., O'Shea, J. N., Khlobystov, A. N., Walsh, D. A., Johnson, L. R., Felfel, R. M., Ahmed, I., & Grant, D. M. (2023). Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response. Advanced Materials Interfaces, 10(5), Article 2201523. https://doi.org/10.1002/admi.202201523

This study describes the chemical conversion and heat treatment of Ti6Al4V microspheres (Ti6_MS), and the resulting effects on their electrocatalytic properties. The wet-chemical conversion (5.0m NaOH, 60°C, 24h; Sample label: Ti6_TC) converts the to... Read More about Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response.

Epitaxy of boron nitride monolayers for graphene-based lateral heterostructures (2021)
Journal Article
Wrigley, J., Bradford, J., James, T., Cheng, T. S., Thomas, J., Mellor, C. J., Khlobystov, A. N., Eaves, L., Foxon, C. T., Novikov, S. V., & Beton, P. H. (2021). Epitaxy of boron nitride monolayers for graphene-based lateral heterostructures. 2D Materials, 8(3), 1-10. https://doi.org/10.1088/2053-1583/abea66

Monolayers of hexagonal boron nitride (hBN) are grown on graphite substrates using high-temperature molecular beam epitaxy (HT-MBE). The hBN monolayers are observed to grow predominantly from step edges on the graphite surface and exhibit a strong de... Read More about Epitaxy of boron nitride monolayers for graphene-based lateral heterostructures.

WS2/MoS2 Heterostructures through Thermal Treatment of MoS2 Layers Electrostatically Functionalized with W3S4 Molecular Clusters (2020)
Journal Article
Morant‐Giner, M., Brotons‐Alcázar, I., Shmelev, N. Y., Gushchin, A. L., Norman, L. T., Khlobystov, A. N., Alberola, A., Tatay, S., Canet‐Ferrer, J., Forment‐Aliaga, A., & Coronado, E. (2020). WS2/MoS2 Heterostructures through Thermal Treatment of MoS2 Layers Electrostatically Functionalized with W3S4 Molecular Clusters. Chemistry - A European Journal, 26(29), 6670-6678. https://doi.org/10.1002/chem.202000248

The preparation of 2D stacked layers combining flakes of different nature gives rise to countless numbers of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large famil... Read More about WS2/MoS2 Heterostructures through Thermal Treatment of MoS2 Layers Electrostatically Functionalized with W3S4 Molecular Clusters.