Skip to main content

Research Repository

Advanced Search

Outputs (32)

Design and optical characterisation of an efficient light trapping structure for dye-sensitized solar cell integrated windows (2018)
Journal Article
Knott, A., Liu, X., Makarovskiy, O., O'Shea, J., Tuck, C., & Wu, Y. (2019). Design and optical characterisation of an efficient light trapping structure for dye-sensitized solar cell integrated windows. Building Simulation, 12(1), 41-49. https://doi.org/10.1007/s12273-018-0485-1

Windows integrated with semi-transparent photovoltaics (PVs) such as Dye-Sensitized Solar Cells (DSSCs) show good potential in improving building performance, in term of providing daylight, reducing unnecessary solar heat gain and also generating ele... Read More about Design and optical characterisation of an efficient light trapping structure for dye-sensitized solar cell integrated windows.

Observation of spin and valley splitting of Landau levels under magnetic tunneling in graphene/boron nitride/graphene structures (2018)
Journal Article
Khanin, Y., Vdovin, E., Larkin, I., Makarovsky, O., Sklyueva, Y., Mishchenko, A., …Novoselov, K. (in press). Observation of spin and valley splitting of Landau levels under magnetic tunneling in graphene/boron nitride/graphene structures. JETP Letters, 107(4), https://doi.org/10.1134/S0021364018040069

Resonance magnetic tunneling in heterostructures formed by graphene single sheets separated by a hexagonal boron nitride barrier and bounded by two gates has been investigated in a strong magnetic field, which has allowed observing transitions betwee... Read More about Observation of spin and valley splitting of Landau levels under magnetic tunneling in graphene/boron nitride/graphene structures.

Scanning photocurrent microscopy of 3D printed light trapping structures in dye-sensitized solar cells (2018)
Journal Article
Knott, A. N., Makarovsky, O., O’Shea, P., Tuck, C., & Wu, Y. (2018). Scanning photocurrent microscopy of 3D printed light trapping structures in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 180, https://doi.org/10.1016/j.solmat.2018.02.028

Converting solar energy directly into electricity as a clean and renewable energy resource is immensely important to solving the energy crisis and environmental pollution problems induced by the consumption of fossil fuels. Dye-sensitized solar cells... Read More about Scanning photocurrent microscopy of 3D printed light trapping structures in dye-sensitized solar cells.

Giant Quantum Hall Plateau in Graphene Coupled to an InSe van der Waals Crystal (2017)
Journal Article
Kudrynskyi, Z. R., Bhuiyan, M. A., Makarovsky, O., Greener, J. D., Vdovin, E. E., Kovalyuk, Z. D., …Patanè, A. (2017). Giant Quantum Hall Plateau in Graphene Coupled to an InSe van der Waals Crystal. Physical Review Letters, 119(15), Article 157701. https://doi.org/10.1103/PhysRevLett.119.157701

© 2017 authors. Published by the American Physical Society. We report on a "giant" quantum Hall effect plateau in a graphene-based field-effect transistor where graphene is capped by a layer of the van der Waals crystal InSe. The giant quantum Hall e... Read More about Giant Quantum Hall Plateau in Graphene Coupled to an InSe van der Waals Crystal.

Enhancing optoelectronic properties of SiC-grown graphene by a surface layer of colloidal quantum dots (2017)
Journal Article
Makarovsky, O., Turyanska, L., Mori, N., Greenaway, M., Eaves, L., Patanè, A., …Yakimova, R. (in press). Enhancing optoelectronic properties of SiC-grown graphene by a surface layer of colloidal quantum dots. 2D Materials, 4(3), https://doi.org/10.1088/2053-1583/aa76bb

We report a simultaneous increase of carrier concentration, mobility and photoresponsivity when SiC-grown graphene is decorated with a surface layer of colloidal PbS quantum dots, which act as electron donors. The charge on the ionised dots is spatia... Read More about Enhancing optoelectronic properties of SiC-grown graphene by a surface layer of colloidal quantum dots.

Mobility enhancement of CVD graphene by spatially correlated charges (2017)
Journal Article
Turyanska, L., Makarovsky, O., Eaves, L., Patanè, A., & Mori, N. (2017). Mobility enhancement of CVD graphene by spatially correlated charges. 2D Materials, 4(2), Article 025026. https://doi.org/10.1088/2053-1583/aa55b4

The manuscript presents a strategy for enhancing the carrier mobility of single layer CVD graphene (CVD SLG) based on spatially correlated charges. Our Monte Carlo simulations, numerical modeling and the experimental results confirm that spatial corr... Read More about Mobility enhancement of CVD graphene by spatially correlated charges.

The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals (2016)
Journal Article
Mudd, G., Molas, M., Chen, X., Zólyomi, V., Nogajewski, K., Kudrynskyi, Z. R., …Patanè, A. (2016). The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals. Scientific Reports, 6(1), Article 39619. https://doi.org/10.1038/srep39619

The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate th... Read More about The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals.

Highly-mismatched InAs/InSe heterojunction diodes (2016)
Journal Article
Velichko, A., Kudrynskyi, Z. R., Di Paola, D., Makarovsky, O., Kesaria, M., Krier, A., …Patanè, A. (in press). Highly-mismatched InAs/InSe heterojunction diodes. Applied Physics Letters, 109(18), Article 182115. https://doi.org/10.1063/1.4967381

We report on heterojunction diodes prepared by exfoliation and direct mechanical transfer of a p-type InSe thin film onto an n-type InAs epilayer. We show that despite the different crystal structures and large lattice mismatch (34%) of the component... Read More about Highly-mismatched InAs/InSe heterojunction diodes.

Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode (2016)
Journal Article
Di Poala, D. M., Kesaria, M., Makarovsky, O., Velichko, A., Eaves, L., Mori, N., …Patanè, A. (in press). Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode. Scientific Reports, 6, Article e32039. https://doi.org/10.1038/srep32039

Interband tunnelling of carriers through a forbidden energy gap, known as Zener tunnelling, is a phenomenon of fundamental and technological interest. Its experimental observation in the Esaki p-n semiconductor diode has led to the first demonstratio... Read More about Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode.

High Broad-Band Photoresponsivity of Mechanically Formed InSe-Graphene van der Waals Heterostructures (2015)
Journal Article
Mudd, G. W., Svatek, S. A., Hague, L., Makarovsky, O., Kudrynskyi, Z. R., Mellor, C. J., …Patanè, A. (2015). High Broad-Band Photoresponsivity of Mechanically Formed InSe-Graphene van der Waals Heterostructures. Advanced Materials, 27(25), 3760-3766. https://doi.org/10.1002/adma.201500889

We exploit the broad-band transparency of graphene and the favorable band line up of graphene with van der Waals InSe crystals to create new functional heterostructures and high-performance photodetectors. The InSe-graphene heterostructure exhibits a... Read More about High Broad-Band Photoresponsivity of Mechanically Formed InSe-Graphene van der Waals Heterostructures.