Skip to main content

Research Repository

Advanced Search

Outputs (2)

Precision magnetic field modelling and control for wearable magnetoencephalography (2021)
Journal Article
Rea, M., Holmes, N., Hill, R. M., Boto, E., Leggett, J., Edwards, L. J., …Brookes, M. J. (2021). Precision magnetic field modelling and control for wearable magnetoencephalography. NeuroImage, 241, Article 118401. https://doi.org/10.1016/j.neuroimage.2021.118401

Optically-pumped magnetometers (OPMs) are highly sensitive, compact magnetic field sensors, which offer a viable alternative to cryogenic sensors (superconducting quantum interference devices – SQUIDs) for magnetoencephalography (MEG). With the promi... Read More about Precision magnetic field modelling and control for wearable magnetoencephalography.

Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system (2021)
Journal Article
Brookes, M. J., Boto, E., Rea, M., Shah, V., Osborne, J., Holmes, N., …Bowtell, R. (2021). Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system. NeuroImage, 236, Article 118025. https://doi.org/10.1016/j.neuroimage.2021.118025

The optically pumped magnetometer (OPM) is a viable means to detect magnetic fields generated by human brain activity. Compared to conventional detectors (superconducting quantum interference devices) OPMs are small, lightweight, flexible, and operat... Read More about Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system.