Skip to main content

Research Repository

Advanced Search

Outputs (6)

Direct Deposition of Copper Atoms onto Graphitic Step Edges Lowers Overpotential and Improves Selectivity of Electrocatalytic CO2 Reduction (2024)
Preprint / Working Paper
Thangamuthu, M., Burwell, T., Aliev, G., Ghaderzadeh, S., Kohlrausch, E., Chen, Y., Theis, W., Norman, L., Fernandes, J., Besley, E., Licence, P., & Khlobystov, A. Direct Deposition of Copper Atoms onto Graphitic Step Edges Lowers Overpotential and Improves Selectivity of Electrocatalytic CO2 Reduction

Minimizing our reliance on bulk precious metals is to increase the fraction of surface atoms and improve the metal-support interface. In this work, we employ a solvent/ligand/counterion-free method to deposit copper in the atomic form directly onto a... Read More about Direct Deposition of Copper Atoms onto Graphitic Step Edges Lowers Overpotential and Improves Selectivity of Electrocatalytic CO2 Reduction.

Selective Excitation of Pd-decorated Titania Enables Consecutive C−C Couplings and Hydrogenations under Ambient Conditions (2023)
Journal Article
Whitehead, R. Z., Norman, L. T., Cull, W. J., Fernandes, J. A., & Lanterna, A. E. (2023). Selective Excitation of Pd-decorated Titania Enables Consecutive C−C Couplings and Hydrogenations under Ambient Conditions. ChemCatChem, 15(21), Article e202300528. https://doi.org/10.1002/cctc.202300528

Here, we discovered that Pd decorated TiO2 (Pd@TiO2) enables consecutive photocatalytic Sonogashira C−C coupling and hydrogenation steps by simply adjusting the excitation conditions of the reaction. We demonstrated that by-products containing iodine... Read More about Selective Excitation of Pd-decorated Titania Enables Consecutive C−C Couplings and Hydrogenations under Ambient Conditions.

Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium–gold nanoparticle coarsening in the hydrogenation of cinnamaldehyde (2023)
Journal Article
Pinto, J., Weilhard, A., Norman, L. T., Lodge, R. W., Rogers, D. M., Gual, A., Cano, I., Khlobystov, A. N., Licence, P., & Alves Fernandes, J. (2023). Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium–gold nanoparticle coarsening in the hydrogenation of cinnamaldehyde. Catalysis Science and Technology, https://doi.org/10.1039/d3cy00289f

In this work, we demonstrate that the synergistic effect of PdAu nanoparticles (NPs) in hydrogenation reactions is not only related to high activity but also to their stability when compared to Pd mono-metallic NPs. To demonstrate this, a series of m... Read More about Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium–gold nanoparticle coarsening in the hydrogenation of cinnamaldehyde.

Defect Etching in Carbon Nanotube Walls for Porous Carbon Nanoreactors: Implications for CO2 Sorption and the Hydrosilylation of Phenylacetylene (2022)
Journal Article
Astle, M. A., Weilhard, A., Rance, G. A., LeMercier, T. M., Stoppiello, C. T., Norman, L. T., Fernandes, J. A., & Khlobystov, A. N. (2022). Defect Etching in Carbon Nanotube Walls for Porous Carbon Nanoreactors: Implications for CO2 Sorption and the Hydrosilylation of Phenylacetylene. ACS Applied Nano Materials, 5(2), 2075-2086. https://doi.org/10.1021/acsanm.1c03803

A method of pore fabrication in the walls of carbon nanotubes has been developed, leading to porous nanotubes that have been filled with catalysts and utilized in liquid- and gas-phase reactions. Chromium oxide nanoparticles have been utilized as hig... Read More about Defect Etching in Carbon Nanotube Walls for Porous Carbon Nanoreactors: Implications for CO2 Sorption and the Hydrosilylation of Phenylacetylene.

Synthesis of ultrathin rhenium disulfide nanoribbons using nano test tubes (2021)
Journal Article
Norman, L. T., Biskupek, J., Rance, G. A., Stoppiello, C. T., Kaiser, U., & Khlobystov, A. N. (2022). Synthesis of ultrathin rhenium disulfide nanoribbons using nano test tubes. Nano Research, 15(2), 1282-1287. https://doi.org/10.1007/s12274-021-3650-2

The synthesis of ultrathin rhenium disulfide (ReS2) nanoribbons within single-walled carbon nanotubes (SWNTs) has been established. Dirhenium decacarbonyl complex is encapsulated into the SWNTs to provide a source of confined rhenium atoms, which rea... Read More about Synthesis of ultrathin rhenium disulfide nanoribbons using nano test tubes.

WS2/MoS2 Heterostructures through Thermal Treatment of MoS2 Layers Electrostatically Functionalized with W3S4 Molecular Clusters (2020)
Journal Article
Morant‐Giner, M., Brotons‐Alcázar, I., Shmelev, N. Y., Gushchin, A. L., Norman, L. T., Khlobystov, A. N., Alberola, A., Tatay, S., Canet‐Ferrer, J., Forment‐Aliaga, A., & Coronado, E. (2020). WS2/MoS2 Heterostructures through Thermal Treatment of MoS2 Layers Electrostatically Functionalized with W3S4 Molecular Clusters. Chemistry - A European Journal, 26(29), 6670-6678. https://doi.org/10.1002/chem.202000248

The preparation of 2D stacked layers combining flakes of different nature gives rise to countless numbers of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large famil... Read More about WS2/MoS2 Heterostructures through Thermal Treatment of MoS2 Layers Electrostatically Functionalized with W3S4 Molecular Clusters.