Skip to main content

Research Repository

Advanced Search

Outputs (54)

High-pressure rheological analysis of CO2-induced melting point depression and viscosity reduction of poly(ε-caprolactone) (2015)
Journal Article
Curia, S., De Focatiis, D. S., & Howdle, S. M. (2015). High-pressure rheological analysis of CO2-induced melting point depression and viscosity reduction of poly(ε-caprolactone). Polymer, 69, https://doi.org/10.1016/j.polymer.2015.05.026

High-pressure rheology has been used to assess the effects of supercritical carbon dioxide (scCO2) on the melting point (Tm) and viscosity of poly (ε-caprolactone) (PCL) over a range of temperatures and pressures up to 300 bar over a wide range of sh... Read More about High-pressure rheological analysis of CO2-induced melting point depression and viscosity reduction of poly(ε-caprolactone).

Interconnectivity and permeability of supercritical fluid-foamed scaffolds and the effect of their structural properties on cell distribution (2013)
Journal Article
Reinwald, Y., Johal, R. K., Ghaemmaghami, A. M., Rose, F. R., Howdle, S. M., & Shakesheff, K. M. (2014). Interconnectivity and permeability of supercritical fluid-foamed scaffolds and the effect of their structural properties on cell distribution. Polymer, 55(1), 435-444. https://doi.org/10.1016/j.polymer.2013.09.041

This study aims to investigate interconnectivity and permeability of scCO2-foamed scaffolds and the influence of structural scaffold properties on cell distribution. Supercritical fluid technology was utilized to fabricated scaffolds from 37 kDa, 53... Read More about Interconnectivity and permeability of supercritical fluid-foamed scaffolds and the effect of their structural properties on cell distribution.

Uniform cell colonization of porous 3-D scaffolds achieved using radial control of surface chemistry (2011)
Journal Article
Intranuovo, F., Howard, D., White, L. J., Johal, R. K., Ghaemmaghami, A. M., Favia, P., …Alexander, M. R. (2011). Uniform cell colonization of porous 3-D scaffolds achieved using radial control of surface chemistry. Acta Biomaterialia, 7(9), 3336-3344. https://doi.org/10.1016/j.actbio.2011.05.020

Uniform cellular distribution is a prerequisite to forming tissue within porous scaffolds, but the seeding process often results in preferential adhesion of cells at the periphery. We develop a vapour phase coating strategy which is readily applicabl... Read More about Uniform cell colonization of porous 3-D scaffolds achieved using radial control of surface chemistry.