Skip to main content

Research Repository

Advanced Search

Outputs (35)

Mechanistic investigations of the Fe(ii) mediated synthesis of squaraines (2024)
Journal Article
Liu, Y., Coles, N. T., Cajiao, N., Taylor, L. J., Davies, E. S., Barbour, A., Morgan, P. J., Butler, K., Pointer-Gleadhill, B., Argent, S. P., McMaster, J., Neidig, M. L., Robinson, D., & Kays, D. L. (2024). Mechanistic investigations of the Fe(ii) mediated synthesis of squaraines. Chemical Science, 15(25), 9599-9611. https://doi.org/10.1039/D4SC01286K

The scission and homologation of CO is a fundamental process in the Fischer–Tropsch reaction. However, given the heterogeneous nature of the catalyst and forcing reaction conditions, it is difficult to determine the intermediates of this reaction. He... Read More about Mechanistic investigations of the Fe(ii) mediated synthesis of squaraines.

Slow magnetic relaxation in Fe(ii) m-terphenyl complexes (2022)
Journal Article
Valentine, A. J., Geer, A. M., Blundell, T. J., Tovey, W., Cliffe, M. J., Davies, E. S., Argent, S. P., Lewis, W., McMaster, J., Taylor, L. J., Reta, D., & Kays, D. L. (2022). Slow magnetic relaxation in Fe(ii) m-terphenyl complexes. Dalton Transactions, 51(47), 18118-18126. https://doi.org/10.1039/d2dt03531f

Two-coordinate transition metal complexes are exciting candidates for single-molecule magnets (SMMs) because their highly axial coordination environments lead to sizeable magnetic anisotropy. We report a series of five structurally related two-coordi... Read More about Slow magnetic relaxation in Fe(ii) m-terphenyl complexes.

Organoruthenium Complexes Containing Hemilabile Phosphinodicarboxamide Ligands (2022)
Preprint / Working Paper
Nolla-Saltiel, R., Geer, A. M., Sharpe, H. R., Huke, C. D., Taylor, L. J., Linford-Wood, T. G., James, A., Allen, J., Lewis, W., Blake, A. J., McMaster, J., & Kays, D. L. Organoruthenium Complexes Containing Hemilabile Phosphinodicarboxamide Ligands

Ruthenium complexes of hemilabile phosphinocarboxamide ligands, and their use to form metallacycles using halide abstraction/deprotonation reactions are reported. Thus, [Ru(p-cym){PPh2C(=O)NHR}Cl2; R = iPr (1), Ph (2), p-tol (3)] and [Ru(p-cym){PPh2C... Read More about Organoruthenium Complexes Containing Hemilabile Phosphinodicarboxamide Ligands.

Structural and Electronic Studies of Substituted m-Terphenyl Group 12 Complexes (2022)
Journal Article
Valentine, A. J., Taylor, L. J., Geer, A. M., Huke, C. D., Wood, K. E., Tovey, W., Lewis, W., Argent, S. P., Teale, A. M., Mcmaster, J., & Kays, D. L. (2022). Structural and Electronic Studies of Substituted m-Terphenyl Group 12 Complexes. Organometallics, 41(11), 1426-1433. https://doi.org/10.1021/acs.organomet.2c00156

The effects of para-substitution on the structural and electronic properties of four series of two-coordinate m-terphenyl Group 12 complexes (R-Ar#)2M (M = Zn, Cd, Hg; R = t-Bu 1-3, SiMe34-6, Cl 7-9, CF310-12, where R-Ar#= 2,6-{2,6-Xyl}2-4-R-C6H2and... Read More about Structural and Electronic Studies of Substituted m-Terphenyl Group 12 Complexes.

Mapping blood biochemistry by Raman spectroscopy at the cellular level (2021)
Journal Article
Volkov, V. V., McMaster, J., Aizenberg, J., & Perry, C. C. (2022). Mapping blood biochemistry by Raman spectroscopy at the cellular level. Chemical Science, 13(1), 133-140. https://doi.org/10.1039/d1sc05764b

We report how Raman difference imaging provides insight on cellular biochemistryin vivoas a function of sub-cellular dimensions and the cellular environment. We show that this approach offers a sensitive diagnostic to address blood biochemistry at th... Read More about Mapping blood biochemistry by Raman spectroscopy at the cellular level.

Group 11 m-Terphenyl Complexes Featuring Metallophilic Interactions (2021)
Journal Article
Liu, Y., Taylor, L. J., Argent, S. P., McMaster, J., & Kays, D. L. (2021). Group 11 m-Terphenyl Complexes Featuring Metallophilic Interactions. Inorganic Chemistry, 60(14), 10114-10123. https://doi.org/10.1021/acs.inorgchem.0c03623

A series of group 11 m-terphenyl complexes have been synthesized via a metathesis reaction from the iron(II) complexes (2,6-Mes2C6H3)2Fe and (2,6-Xyl2C6H3)2Fe (Mes = 2,4,6-Me3C6H2; Xyl = 2,6-Me2C6H3). [2,6-Mes2C6H3M]2 (1, M = Cu; 2, M = Ag; 6, M = Au... Read More about Group 11 m-Terphenyl Complexes Featuring Metallophilic Interactions.

Structural and electronic studies of substituted m-terphenyl lithium complexes (2020)
Journal Article
Valentine, A. J., Geer, A. M., Taylor, L. J., Teale, A. M., Wood, K. E., Williams, H. E. L., Lewis, W., Argent, S. P., McMaster, J., & Kays, D. L. (2021). Structural and electronic studies of substituted m-terphenyl lithium complexes. Dalton Transactions, 50(2), 722-728. https://doi.org/10.1039/d0dt03972a

The effect of para-substitution upon the structural and electronic properties of a series of m-terphenyl lithium complexes [R-Ar#-Li]2 (R = t-Bu 1, SiMe32, H 3, Cl 4, CF35; where R-Ar# = 2,6-{2,6-Xyl}2-4-R-C6H2 and 2,6-Xyl = 2,6-Me2C6H3) has been inv... Read More about Structural and electronic studies of substituted m-terphenyl lithium complexes.

Carbene‐induced rescue of catalytic activity in deactivated Nitrite Reductase mutant (2020)
Journal Article
Planchestainer, M., Schulz, C., McMaster, J., Paradisi, F., & Albrecht, M. (2020). Carbene‐induced rescue of catalytic activity in deactivated Nitrite Reductase mutant. Chemistry - A European Journal, 26(66), 15206-15211. https://doi.org/10.1002/chem.202002444

The role of His145 in the T1 copper center of Nitrite Reductase (NiR) is pivotal for the activity of the enzyme. Mutation to a glycine at this position enables the reconstitution of the T1 center by the addition of imidazole as exogenous ligands, how... Read More about Carbene‐induced rescue of catalytic activity in deactivated Nitrite Reductase mutant.

A transition metal–gallium cluster formed via insertion of “GaI” (2020)
Journal Article
Blundell, T. J., Taylor, L. J., Valentine, A. J., Lewis, W., Blake, A. J., McMaster, J., & Kays, D. L. (2020). A transition metal–gallium cluster formed via insertion of “GaI”. Chemical Communications, 56(58), 8139-8142. https://doi.org/10.1039/d0cc03559a

The reaction between a two-coordinate Co(II) diaryl complex and “GaI” affords 2,6-Pmp2C6H3CoGa3I5, in a new geometry for a heavier group 13-transition metal cluster. Experimental and computational investigations show that this compound is best descri... Read More about A transition metal–gallium cluster formed via insertion of “GaI”.

Influence of molecular design on radical spin multiplicity: characterisation of BODIPY dyad and triad radical anions (2020)
Journal Article
Mangham, B., Hanson-Heine, M. W. D., Davies, E. S., Wriglesworth, A., George, M. W., Lewis, W., Kays, D. L., McMaster, J., Besley, N. A., & Champness, N. R. (2020). Influence of molecular design on radical spin multiplicity: characterisation of BODIPY dyad and triad radical anions. Physical Chemistry Chemical Physics, 22(8), 4429-4438. https://doi.org/10.1039/c9cp06427c

This journal is © the Owner Societies. A strategy to create organic molecules with high degrees of radical spin multiplicity is reported in which molecular design is correlated with the behaviour of radical anions in a series of BODIPY dyads. Upon re... Read More about Influence of molecular design on radical spin multiplicity: characterisation of BODIPY dyad and triad radical anions.