Skip to main content

Research Repository

Advanced Search

Outputs (4)

Structural and electronic studies of substituted m-terphenyl lithium complexes (2020)
Journal Article
Valentine, A. J., Geer, A. M., Taylor, L. J., Teale, A. M., Wood, K. E., Williams, H. E. L., Lewis, W., Argent, S. P., McMaster, J., & Kays, D. L. (2021). Structural and electronic studies of substituted m-terphenyl lithium complexes. Dalton Transactions, 50(2), 722-728. https://doi.org/10.1039/d0dt03972a

The effect of para-substitution upon the structural and electronic properties of a series of m-terphenyl lithium complexes [R-Ar#-Li]2 (R = t-Bu 1, SiMe32, H 3, Cl 4, CF35; where R-Ar# = 2,6-{2,6-Xyl}2-4-R-C6H2 and 2,6-Xyl = 2,6-Me2C6H3) has been inv... Read More about Structural and electronic studies of substituted m-terphenyl lithium complexes.

Carbene‐induced rescue of catalytic activity in deactivated Nitrite Reductase mutant (2020)
Journal Article
Planchestainer, M., Schulz, C., McMaster, J., Paradisi, F., & Albrecht, M. (2020). Carbene‐induced rescue of catalytic activity in deactivated Nitrite Reductase mutant. Chemistry - A European Journal, 26(66), 15206-15211. https://doi.org/10.1002/chem.202002444

The role of His145 in the T1 copper center of Nitrite Reductase (NiR) is pivotal for the activity of the enzyme. Mutation to a glycine at this position enables the reconstitution of the T1 center by the addition of imidazole as exogenous ligands, how... Read More about Carbene‐induced rescue of catalytic activity in deactivated Nitrite Reductase mutant.

A transition metal–gallium cluster formed via insertion of “GaI” (2020)
Journal Article
Blundell, T. J., Taylor, L. J., Valentine, A. J., Lewis, W., Blake, A. J., McMaster, J., & Kays, D. L. (2020). A transition metal–gallium cluster formed via insertion of “GaI”. Chemical Communications, 56(58), 8139-8142. https://doi.org/10.1039/d0cc03559a

The reaction between a two-coordinate Co(II) diaryl complex and “GaI” affords 2,6-Pmp2C6H3CoGa3I5, in a new geometry for a heavier group 13-transition metal cluster. Experimental and computational investigations show that this compound is best descri... Read More about A transition metal–gallium cluster formed via insertion of “GaI”.

Influence of molecular design on radical spin multiplicity: characterisation of BODIPY dyad and triad radical anions (2020)
Journal Article
Mangham, B., Hanson-Heine, M. W. D., Davies, E. S., Wriglesworth, A., George, M. W., Lewis, W., Kays, D. L., McMaster, J., Besley, N. A., & Champness, N. R. (2020). Influence of molecular design on radical spin multiplicity: characterisation of BODIPY dyad and triad radical anions. Physical Chemistry Chemical Physics, 22(8), 4429-4438. https://doi.org/10.1039/c9cp06427c

This journal is © the Owner Societies. A strategy to create organic molecules with high degrees of radical spin multiplicity is reported in which molecular design is correlated with the behaviour of radical anions in a series of BODIPY dyads. Upon re... Read More about Influence of molecular design on radical spin multiplicity: characterisation of BODIPY dyad and triad radical anions.