Skip to main content

Research Repository

Advanced Search

Outputs (29)

Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient (2024)
Journal Article
Rivers, G., Lion, A., Putri, N. R. E., Rance, G. A., Moloney, C., Taresco, V., …He, Y. (2024). Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient. Materials Today Advances, 22, Article 100493. https://doi.org/10.1016/j.mtadv.2024.100493

Additive manufacturing offers manufacture of personalised pharmaceutical tablets through design freedoms and material deposition control at an individual voxel level. This control goes beyond geometry and materials choices: inkjet based 3D printing e... Read More about Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient.

Synergy of nanocrystalline carbon nitride with Cu single atom catalyst leads to selective photocatalytic reduction of CO2 to methanol (2024)
Journal Article
LeMercier, T. M., Thangamuthu, M., Kohlrausch, E. C., Chen, Y., Stoppiello, C. T., Fay, M. W., …Khlobystov, A. N. (2024). Synergy of nanocrystalline carbon nitride with Cu single atom catalyst leads to selective photocatalytic reduction of CO2 to methanol. Sustainable Energy and Fuels, 1691-1703. https://doi.org/10.1039/D4SE00028E

Carbon nitride (C3N4) possesses both a band gap in the visible range and a low-lying conduction band potential, suitable for water splitting and CO2 reduction reactions (CO2RR). Yet, bulk C3N4 (b-C3N4) suffers from structural disorder leading to slug... Read More about Synergy of nanocrystalline carbon nitride with Cu single atom catalyst leads to selective photocatalytic reduction of CO2 to methanol.

Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas (2024)
Journal Article
Cardillo-Zallo, I., Biskupek, J., Bloodworth, S., Marsden, E. S., Fay, M. W., Ramasse, Q. M., …Khlobystov, A. N. (2024). Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas. ACS Nano, 18(4), 2958–2971. https://doi.org/10.1021/acsnano.3c07853

Single-atom dynamics of noble-gas elements have been investigated using time-resolved transmission electron microscopy (TEM), with direct observation providing for a deeper understanding of chemical bonding, reactivity, and states of matter at the na... Read More about Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas.

Host–Guest Chemistry in Boron Nitride Nanotubes: Interactions with Polyoxometalates and Mechanism of Encapsulation (2022)
Journal Article
Jordan, J. W., Chernov, A. I., Rance, G. A., Stephen Davies, E., Lanterna, A. E., Alves Fernandes, J., …Khlobystov, A. N. (2023). Host–Guest Chemistry in Boron Nitride Nanotubes: Interactions with Polyoxometalates and Mechanism of Encapsulation. Journal of the American Chemical Society, 145(2), 1206-1215. https://doi.org/10.1021/jacs.2c10961

Boron nitride nanotubes (BNNTs) are an emerging class of molecular container offering new functionalities and possibilities for studying molecules at the nanoscale. Herein, BNNTs are demonstrated as highly effective nanocontainers for polyoxometalate... Read More about Host–Guest Chemistry in Boron Nitride Nanotubes: Interactions with Polyoxometalates and Mechanism of Encapsulation.

Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity (2022)
Journal Article
Madden, D. G., O’Nolan, D., Rampal, N., Babu, R., Çamur, C., Al Shakhs, A. N., …Fairen-Jimenez, D. (2022). Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity. Journal of the American Chemical Society, 144(30), 13729-13739. https://doi.org/10.1021/jacs.2c04608

We are currently witnessing the dawn of hydrogen (H2) economy, where H2 will soon become a primary fuel for heating, transportation, and long-distance and long-term energy storage. Among diverse possibilities, H2 can be stored as a pressurized gas, a... Read More about Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity.

Reactive Jetting of High Viscosity Nanocomposites for Dielectric Elastomer Actuation (2022)
Journal Article
Malas, A., Saleh, E., Giménez‐López, M. D. C., Rance, G. A., Helps, T., Taghavi, M., …Goodridge, R. D. (2022). Reactive Jetting of High Viscosity Nanocomposites for Dielectric Elastomer Actuation. Advanced Materials Technologies, 7(6), Article 2101111. https://doi.org/10.1002/admt.202101111

The layer-by-layer nature of additive manufacturing is well matched to the layer construction of stacked dielectric actuators, with inkjet printing offering a unique opportunity due to its droplet-on-demand capability, suitable for multi-material pro... Read More about Reactive Jetting of High Viscosity Nanocomposites for Dielectric Elastomer Actuation.

Synthesis of ultrathin rhenium disulfide nanoribbons using nano test tubes (2021)
Journal Article
Norman, L. T., Biskupek, J., Rance, G. A., Stoppiello, C. T., Kaiser, U., & Khlobystov, A. N. (2022). Synthesis of ultrathin rhenium disulfide nanoribbons using nano test tubes. Nano Research, 15(2), 1282-1287. https://doi.org/10.1007/s12274-021-3650-2

The synthesis of ultrathin rhenium disulfide (ReS2) nanoribbons within single-walled carbon nanotubes (SWNTs) has been established. Dirhenium decacarbonyl complex is encapsulated into the SWNTs to provide a source of confined rhenium atoms, which rea... Read More about Synthesis of ultrathin rhenium disulfide nanoribbons using nano test tubes.

Effect of Excipients on Salt Disproportionation during Dissolution: A Novel Application of In Situ Raman Imaging (2021)
Journal Article
Abouselo, A., Rance, G. A., Tres, F., Taylor, L. S., Kwokal, A., Renou, L., …Aylott, J. W. (2021). Effect of Excipients on Salt Disproportionation during Dissolution: A Novel Application of In Situ Raman Imaging. Molecular Pharmaceutics, 18(9), 3247-3259. https://doi.org/10.1021/acs.molpharmaceut.1c00119

We have employed a bespoke setup combining confocal Raman microscopy and an ultraviolet–visible (UV–Vis) spectroscopy flow cell to investigate the effect of excipients on the disproportionation kinetics of Pioglitazone HCl (PioHCl) in tablets during... Read More about Effect of Excipients on Salt Disproportionation during Dissolution: A Novel Application of In Situ Raman Imaging.

Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices (2020)
Journal Article
Wang, F., Gosling, J. H., Rance, G. A., Trindade, G. F., Makarovsky, O., Cottam, N. D., …Turyanska, L. (2021). Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices. Advanced Functional Materials, 31(5), Article 2007478. https://doi.org/10.1002/adfm.202007478

© 2020 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH 2D materials have unique structural and electronic properties with potential for transformative device applications. However, such devices are usually bespoke structures ma... Read More about Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices.

A Click Chemistry Strategy for the Synthesis of Efficient Photoinitiators for Two‐Photon Polymerization (2020)
Journal Article
Henning, I., Woodward, A. W., Rance, G. A., Paul, B. T., Wildman, R. D., Irvine, D. J., & Moore, J. C. (2020). A Click Chemistry Strategy for the Synthesis of Efficient Photoinitiators for Two‐Photon Polymerization. Advanced Functional Materials, 30(50), Article 2006108. https://doi.org/10.1002/adfm.202006108

It is reported that efficient photoinitiators, suitable for two‐photon polymerization, can be obtained using the copper catalyzed azide/alkyne cycloaddition reaction. This click chemistry strategy provides a modular approach to the assembly of photoi... Read More about A Click Chemistry Strategy for the Synthesis of Efficient Photoinitiators for Two‐Photon Polymerization.