Skip to main content

Research Repository

Advanced Search

Outputs (6)

Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient (2024)
Journal Article
Rivers, G., Lion, A., Putri, N. R. E., Rance, G. A., Moloney, C., Taresco, V., Crucitti, V. C., Constantin, H., Evangelista Barreiros, M. I., Cantu, L. R., Tuck, C. J., Rose, F. R., Hague, R. J., Roberts, C. J., Turyanska, L., Wildman, R. D., & He, Y. (2024). Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient. Materials Today Advances, 22, Article 100493. https://doi.org/10.1016/j.mtadv.2024.100493

Additive manufacturing offers manufacture of personalised pharmaceutical tablets through design freedoms and material deposition control at an individual voxel level. This control goes beyond geometry and materials choices: inkjet based 3D printing e... Read More about Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient.

Glycerol-based sustainably sourced resin for volumetric printing (2024)
Journal Article
Krumins, E., Lentz, J. C., Sutcliffe, B., Sohaib, A., Jacob, P. L., Brugnoli, B., Cuzzucoli Crucitti, V., Cavanagh, R., Owen, R., Moloney, C., Ruiz-Cantu, L., Francolini, I., Howdle, S. M., Shusteff, M., Rose, F. R. A. J., Wildman, R. D., He, Y., & Taresco, V. (2024). Glycerol-based sustainably sourced resin for volumetric printing. Green Chemistry, 26(3), 1345-1355. https://doi.org/10.1039/d3gc03607c

Volumetric Additive Manufacturing (VAM) represents a revolutionary advancement in the field of Additive Manufacturing, as it allows for the creation of objects in a single, cohesive process, rather than in a layer-by-layer approach. This innovative t... Read More about Glycerol-based sustainably sourced resin for volumetric printing.

Correction to “Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers” (2022)
Journal Article
Ruiz-Cantu, L., Trindade, G. F., Taresco, V., Zhou, Z., He, Y., Burroughs, L., Clark, E. A., Rose, F. R. A. J., Tuck, C., Hague, R., Roberts, C. J., Alexander, M., Irvine, D. J., & Wildman, R. D. (2022). Correction to “Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers”. ACS Applied Materials and Interfaces, 14(6), 8654. https://doi.org/10.1021/acsami.2c00035

The chemical structure of the drug trandolapril has been corrected in Figure 4c. The conclusions of the work have not been affected by this correction. (Figure present).

Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers (2021)
Journal Article
Ruiz-Cantu, L., Trindade, G. F., Taresco, V., Zhou, Z., He, Y., Burroughs, L., Clark, E. A., Rose, F. R., Tuck, C., Hague, R., Roberts, C. J., Alexander, M., Irvine, D. J., & Wildman, R. D. (2021). Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers. ACS Applied Materials and Interfaces, 13(33), 38969-38978. https://doi.org/10.1021/acsami.1c07850

Controlling the microstructure of materials by means of phase separation is a versatile tool for optimizing material properties. Phase separation has been exploited to fabricate intricate microstructures in many fields including cell biology, tissue... Read More about Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers.

Geometry alone influences stem cell differentiation in a precision 3D printed stem cell niche (2018)
Preprint / Working Paper
Prina, E., Sidney, L., Tromayer, M., Moore, J., Liska, R., Bertolin, M., Ferrari, S., Hopkinson, A., Dua, H., Yang, J., Wildman, R., & Rose, F. R. Geometry alone influences stem cell differentiation in a precision 3D printed stem cell niche

Stem cells within epithelial tissues reside in anatomical structures known as crypts that are known to contribute to the mechanical and chemical milieu important for function. To date, epithelial stem cell therapies have largely ignored the niche and... Read More about Geometry alone influences stem cell differentiation in a precision 3D printed stem cell niche.

Interconnectivity and permeability of supercritical fluid-foamed scaffolds and the effect of their structural properties on cell distribution (2013)
Journal Article
Reinwald, Y., Johal, R. K., Ghaemmaghami, A. M., Rose, F. R., Howdle, S. M., & Shakesheff, K. M. (2014). Interconnectivity and permeability of supercritical fluid-foamed scaffolds and the effect of their structural properties on cell distribution. Polymer, 55(1), 435-444. https://doi.org/10.1016/j.polymer.2013.09.041

This study aims to investigate interconnectivity and permeability of scCO2-foamed scaffolds and the influence of structural scaffold properties on cell distribution. Supercritical fluid technology was utilized to fabricated scaffolds from 37 kDa, 53... Read More about Interconnectivity and permeability of supercritical fluid-foamed scaffolds and the effect of their structural properties on cell distribution.