Skip to main content

Research Repository

Advanced Search

Outputs (37)

Host–Guest Hybrid Redox Materials Self‐Assembled from Polyoxometalates and Single‐Walled Carbon Nanotubes (2019)
Journal Article
Jordan, J. W., Lowe, G. A., McSweeney, R. L., Stoppiello, C. T., Lodge, R. W., Skowron, S. T., Biskupek, J., Rance, G. A., Kaiser, U., Walsh, D. A., Newton, G. N., & Khlobystov, A. N. (2019). Host–Guest Hybrid Redox Materials Self‐Assembled from Polyoxometalates and Single‐Walled Carbon Nanotubes. Advanced Materials, 31(41), Article 1904182. https://doi.org/10.1002/adma.201904182

The development of next‐generation molecular‐electronic, electrocatalytic, and energy‐storage systems depends on the availability of robust materials in which molecular charge‐storage sites and conductive hosts are in intimate contact. It is shown he... Read More about Host–Guest Hybrid Redox Materials Self‐Assembled from Polyoxometalates and Single‐Walled Carbon Nanotubes.

Efficient Electrocatalytic CO2 Reduction Driven by Ionic Liquid Buffer‐Like Solutions (2019)
Journal Article
Goncalves, W. D. G., Zanatta, M., Simon, N. M., Rutzen, L. M., Walsh, D. A., & Dupont, J. (2019). Efficient Electrocatalytic CO2 Reduction Driven by Ionic Liquid Buffer‐Like Solutions. ChemSusChem, 12(18), 4170-4175. https://doi.org/10.1002/cssc.201901076

We show here that electrocatalysis of CO2 reduction in aqueous electrolytes containing the ionic liquid (IL) 1-n-butyl-2,3dimethylimidazolium acetate ([BMMIm][OAc]) and dimethyl sulfoxide (DMSO) proceeds at low overpotentials (−0.9 V vs. Ag/AgCl) at... Read More about Efficient Electrocatalytic CO2 Reduction Driven by Ionic Liquid Buffer‐Like Solutions.

Tuning the Reactivity of TEMPO during Electrocatalytic Alcohol Oxidations in Room-Temperature Ionic Liquids (2019)
Journal Article
Delorme, A. E., Sans, V., Licence, P., & Walsh, D. A. (2019). Tuning the Reactivity of TEMPO during Electrocatalytic Alcohol Oxidations in Room-Temperature Ionic Liquids. ACS Sustainable Chemistry and Engineering, 7(13), 11691-11699. https://doi.org/10.1021/acssuschemeng.9b01823

2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) is a promising, sustainable, metal-free mediator for oxidation of alcohols. In this contribution, we describe how the selectivity of TEMPO for electrocatalytic alcohol oxidations in room-temperature ionic... Read More about Tuning the Reactivity of TEMPO during Electrocatalytic Alcohol Oxidations in Room-Temperature Ionic Liquids.

An ultra-high vacuum electrochemical/mass spectrometry study of anodic decomposition of a protic ionic liquid (2018)
Journal Article
Goodwin, S., Gibson, J., Jones, R., & Walsh, D. A. (2018). An ultra-high vacuum electrochemical/mass spectrometry study of anodic decomposition of a protic ionic liquid. Electrochemistry Communications, 90, https://doi.org/10.1016/j.elecom.2018.04.013

Protic ionic liquids (PILs) are ionic liquids that are formed by proton transfer from Brønsted acids to Brønsted bases, and which are being proposed for use in a wide range of electrochemical devices. In this contribution, we describe electrolysis of... Read More about An ultra-high vacuum electrochemical/mass spectrometry study of anodic decomposition of a protic ionic liquid.

Sulfonylative and azidosulfonylative cyclizations by visible-light-photosensitization of sulfonyl azides in THF (2017)
Journal Article
Zhu, S., Pathigoolla, A., Lowe, G., Walsh, D. A., Cooper, M., Lewis, W., & Lam, H. W. (2017). Sulfonylative and azidosulfonylative cyclizations by visible-light-photosensitization of sulfonyl azides in THF. Chemistry - A European Journal, 23(69), https://doi.org/10.1002/chem.201704380

The generation of sulfonyl radicals from sulfonyl azides using visible light and a photoactive iridium complex in THF is described. This process was used to promote sulfonylative and azidosulfonylative cyclizations of enynes to give several classes o... Read More about Sulfonylative and azidosulfonylative cyclizations by visible-light-photosensitization of sulfonyl azides in THF.

The contrasting effects of diethylmethylamine during reduction of protons and oxidation of formic acid in diethylmethylammonium-based protic ionic liquids (2017)
Journal Article
Goodwin, S., Muhammad, S., Tuan, L.-P., & Walsh, D. (2018). The contrasting effects of diethylmethylamine during reduction of protons and oxidation of formic acid in diethylmethylammonium-based protic ionic liquids. Journal of Electroanalytical Chemistry, 819, https://doi.org/10.1016/j.jelechem.2017.10.021

Ionic liquids are formally defined as liquids that consist entirely of ions, and which are liquid below 100 C. As these liquids are being proposed for use in a range of electrochemical devices and applications, understanding the electrochemical beha... Read More about The contrasting effects of diethylmethylamine during reduction of protons and oxidation of formic acid in diethylmethylammonium-based protic ionic liquids.

Electroanalysis of neutral precursors in protic ionic liquids and synthesis of high-ionicity ionic liquids (2017)
Journal Article
Sean, G., Daniel, S., Joshua, G., Jones, R., & Walsh, D. A. (in press). Electroanalysis of neutral precursors in protic ionic liquids and synthesis of high-ionicity ionic liquids. Langmuir, 33(34), https://doi.org/10.1021/acs.langmuir.7b02294

Protic ionic liquids (PILs) are ionic liquids that are formed by transferring protons from Brønsted acids to Brønsted bases. While they nominally consist entirely of ions, PILs can often behave as though they contain a significant amount of neutral... Read More about Electroanalysis of neutral precursors in protic ionic liquids and synthesis of high-ionicity ionic liquids.

Closed bipolar electrodes for spatial separation of H2 and O2 evolution during water electrolysis and the development of high-voltage fuel cells (2017)
Journal Article
Goodwin, S., & Walsh, D. A. (2017). Closed bipolar electrodes for spatial separation of H2 and O2 evolution during water electrolysis and the development of high-voltage fuel cells. ACS Applied Materials and Interfaces, 9(28), 23654-23661. https://doi.org/10.1021/acsami.7b04226

Electrolytic water splitting could potentially provide clean H2 for a future ‘Hydrogen Economy.’ However, as H2 and O2 are produced in close proximity to each other in water electrolysers, mixing of the gases can occur during electrolysis, with pote... Read More about Closed bipolar electrodes for spatial separation of H2 and O2 evolution during water electrolysis and the development of high-voltage fuel cells.

Extremely Stable Platinum-Amorphous Carbon Electrocatalyst within Hollow Graphitized Carbon Nanofibers for the Oxygen Reduction Reaction (2016)
Journal Article
Gimenez-Lopez, M. D. C., Kurtoglu, A., Walsh, D. A., & Khlobystov, A. N. (2016). Extremely Stable Platinum-Amorphous Carbon Electrocatalyst within Hollow Graphitized Carbon Nanofibers for the Oxygen Reduction Reaction. Advanced Materials, 28(41), 9103-9108. https://doi.org/10.1002/adma.201602485

Unprecedented electrochemical stabilization of platinum nanoparticles (PtNPs) is presented, upon insertion into shortened hollow graphitized carbon nanofibers (PtNP@S-GNF) toward the oxygen-reduction reaction for fuel-cell applications. In contrast t... Read More about Extremely Stable Platinum-Amorphous Carbon Electrocatalyst within Hollow Graphitized Carbon Nanofibers for the Oxygen Reduction Reaction.

Bridging the performance gap between electric double-layer capacitors and batteries with high-energy/high-power carbon nanotube-based electrodes (2016)
Journal Article
Matabosch Coromina, H., Adeniran, B., Mokaya, R., & Walsh, D. A. (2016). Bridging the performance gap between electric double-layer capacitors and batteries with high-energy/high-power carbon nanotube-based electrodes. Journal of Materials Chemistry A, 4(38), 14586-14594. https://doi.org/10.1039/c6ta05686e

Electric double-layer capacitors (EDLCs) store electrical energy at the interface between charged electrodes and electrolytes and are higher-power devices than batteries. However, the amount of energy stored in EDLCs cannot compete with that in batte... Read More about Bridging the performance gap between electric double-layer capacitors and batteries with high-energy/high-power carbon nanotube-based electrodes.