Skip to main content

Research Repository

Advanced Search

Outputs (2)

Polymer pro-drug nanoparticles for sustained release of cytotoxic drugs evaluated in patient-derived glioblastoma cell lines and in situ gelling formulations (2021)
Journal Article
Vasey, C. E., Cavanagh, R. J., Taresco, V., Moloney, C., Smith, S., Rahman, R., & Alexander, C. (2021). Polymer pro-drug nanoparticles for sustained release of cytotoxic drugs evaluated in patient-derived glioblastoma cell lines and in situ gelling formulations. Pharmaceutics, 13(2), Article 208. https://doi.org/10.3390/pharmaceutics13020208

Glioblastoma (GBM) is the most common, malignant and aggressive brain tumour in adults. Despite the use of multimodal treatments, involving surgery, followed by concomitant radiotherapy and chemotherapy, the median survival for patients remains less... Read More about Polymer pro-drug nanoparticles for sustained release of cytotoxic drugs evaluated in patient-derived glioblastoma cell lines and in situ gelling formulations.

Effects of Polymer 3D Architecture, Size, and Chemistry on Biological Transport and Drug Delivery In Vitro and in Orthotopic Triple Negative Breast Cancer Models (2020)
Journal Article
Anane‐Adjei, A. B., Pearce, A. K., Anane-Adjei, A. B., Cavanagh, R. J., Monteiro, P. F., Bennett, T. M., Taresco, V., Clarke, P. A., Ritchie, A. A., Alexander, M. R., Grabowska, A. M., & Alexander, C. (2020). Effects of Polymer 3D Architecture, Size, and Chemistry on Biological Transport and Drug Delivery In Vitro and in Orthotopic Triple Negative Breast Cancer Models. Advanced Healthcare Materials, 9(22), Article 2000892. https://doi.org/10.1002/adhm.202000892

© 2020 Wiley-VCH GmbH The size, shape, and underlying chemistries of drug delivery particles are key parameters which govern their ultimate performance in vivo. Responsive particles are desirable for triggered drug delivery, achievable through archit... Read More about Effects of Polymer 3D Architecture, Size, and Chemistry on Biological Transport and Drug Delivery In Vitro and in Orthotopic Triple Negative Breast Cancer Models.