Skip to main content

Research Repository

Advanced Search

Using Raman spectroscopy to improve hyperpolarized noble gas production for clinical lung imaging techniques

Birchall, Jonathan; Whiting, Nicholas; Skinner, Jason; Barlow, Michael J.; Goodson, Boyd M.

Using Raman spectroscopy to improve hyperpolarized noble gas production for clinical lung imaging techniques Thumbnail


Authors

Jonathan Birchall

Nicholas Whiting

Jason Skinner

Michael J. Barlow

Boyd M. Goodson



Abstract

Spin-exchange optical pumping (SEOP) can be used to “hyperpolarize” 129Xe for human lung MRI. SEOP involves transfer of angular momentum from light to an alkali metal (Rb) vapor, and then onto 129Xe nuclear spins during collisions; collisions between excited Rb and N2 ensure that incident optical energy is nonradiatively converted into heat. However, because variables that govern SEOP are temperature-dependent, the excess heat can complicate efforts to maximize spin polarization—particularly at high laser fluxes and xenon densities. Ultra-low frequency Raman spectroscopy may be used to perform in situ gas temperature measurements to investigate the interplay of energy thermalization and SEOP dynamics. Experimental configurations include an “orthogonal” pump-and-probe design and a newer “inline” design (with source and detector on the same axis) that has provided a >20-fold improvement in SNR. The relationship between 129Xe polarization and the spatiotemporal distribution of N2 rotational temperatures has been investigated as a function of incident laser flux, exterior cell temperature, and gas composition. Significantly elevated gas temperatures have been observed —hundreds of degrees hotter than exterior cell surfaces—and variances with position and time can indicate underlying energy transport, convection, and Rb mass-transport processes that, if not controlled, can negatively impact 129Xe hyperpolarization.

Citation

Birchall, J., Whiting, N., Skinner, J., Barlow, M. J., & Goodson, B. M. (2017). Using Raman spectroscopy to improve hyperpolarized noble gas production for clinical lung imaging techniques. In Raman spectroscopy and applications (247-268). London: InTech. https://doi.org/10.5772/65114

Acceptance Date Aug 4, 2016
Online Publication Date Feb 15, 2017
Publication Date Feb 15, 2017
Deposit Date Aug 10, 2018
Publicly Available Date Aug 10, 2018
Publisher InTech
Pages 247-268
Book Title Raman spectroscopy and applications
Chapter Number 12
ISBN 9789535129073; 9789535129080
DOI https://doi.org/10.5772/65114
Keywords low-frequency Raman, hyperpolarization, spin-exchange optical pumping, xenon NMR/MRI, low-field NMR, remote temperature measurement
Public URL https://nottingham-repository.worktribe.com/output/988934
Contract Date Aug 10, 2018

Files





You might also like



Downloadable Citations