Skip to main content

Research Repository

Advanced Search

Outputs (3)

An Overview Of Strategic Bridge Life Cycle Modelling On The British Railway (2022)
Presentation / Conference Contribution
Hamer, M. J., Calvert, G. S., & Neves, L. A. C. (2022). An Overview Of Strategic Bridge Life Cycle Modelling On The British Railway. In J. Ramon Casas, D. M. Frangopol, & J. Turmo (Eds.), Bridge Safety, Maintenance, Management, Life-Cycle, Resilience and Sustainability: Proceedings of the Eleventh International Conference on Bridge Maintenance, Safety and Management (IABMAS 2022), Barcelona, Spain, July 11-15, 2022

Bridges are critical assets for the safe, reliable, and functional operation of transportation networks. Infrastructure asset managers are responsible for ensuring that these bridges adhere to rigorous safety standards using the finite resources avai... Read More about An Overview Of Strategic Bridge Life Cycle Modelling On The British Railway.

Dynamic and dependent tree theory (D2T2): A framework for the analysis of fault trees with dependent basic events (2022)
Journal Article
Andrews, J., & Tolo, S. (2023). Dynamic and dependent tree theory (D2T2): A framework for the analysis of fault trees with dependent basic events. Reliability Engineering and System Safety, 230, Article 108959. https://doi.org/10.1016/j.ress.2022.108959

Fault tree analysis remains the most commonly employed method, particularly in the safety critical industries, to predict the probability or frequency of system failures. Whilst it has its origins back in the 1960s, the assumptions employed in the ma... Read More about Dynamic and dependent tree theory (D2T2): A framework for the analysis of fault trees with dependent basic events.

A Petri net model-based resilience analysis of nuclear power plants under the threat of natural hazards (2022)
Journal Article
Yan, R., Dunnett, S., & Andrews, J. (2023). A Petri net model-based resilience analysis of nuclear power plants under the threat of natural hazards. Reliability Engineering and System Safety, 230, Article 108979. https://doi.org/10.1016/j.ress.2022.108979

Due to global climate change, nuclear power plants are increasingly exposed to the threats of extreme natural disasters. In this paper, a resilience engineering approach is applied to tackle all aspects of nuclear safety, spanning from design, operat... Read More about A Petri net model-based resilience analysis of nuclear power plants under the threat of natural hazards.