Skip to main content

Research Repository

Advanced Search

Dr NICOLAI KRAUS's Outputs (3)

The General Universal Property of the Propositional Truncation (2015)
Journal Article
Kraus, N. (2015). The General Universal Property of the Propositional Truncation. LIPIcs, 39, 111-145. https://doi.org/10.4230/LIPIcs.TYPES.2014.111

In a type-theoretic fibration category in the sense of Shulman (representing a dependent type theory with at least 1, Sigma, Pi, and identity types), we define the type of constant functions from A to B. This involves an infinite tower of coherence c... Read More about The General Universal Property of the Propositional Truncation.

Functions out of Higher Truncations (2015)
Journal Article
Capriotti, P., Kraus, N., & Vezzosi, A. (2015). Functions out of Higher Truncations. LIPIcs, 41, https://doi.org/10.4230/LIPIcs.CSL.2015.359

In homotopy type theory, the truncation operator ||-||n (for a number n > -2) is often useful if one does not care about the higher structure of a type and wants to avoid coherence problems. However, its elimination principle only allows to eliminate... Read More about Functions out of Higher Truncations.

Higher Homotopies in a Hierarchy of Univalent Universes (2015)
Journal Article
Kraus, N., & Sattler, C. (2015). Higher Homotopies in a Hierarchy of Univalent Universes. ACM Transactions on Computational Logic, 16(2), Article 18. https://doi.org/10.1145/2729979

For Martin-Lof type theory with a hierarchy U(0): U(1): U(2): ... of univalent universes, we show that U(n) is not an n-type. Our construction also solves the problem of finding a type that strictly has some high truncation level without using higher... Read More about Higher Homotopies in a Hierarchy of Univalent Universes.