Skip to main content

Research Repository

Advanced Search

Professor SERHIY BOZHKO's Outputs (6)

Active DC-link capacitor harmonic current reduction in two-level back-to-back converter (2015)
Journal Article
Shen, L., Bozhko, S., Asher, G., Patel, C., & Wheeler, P. (2015). Active DC-link capacitor harmonic current reduction in two-level back-to-back converter. IEEE Transactions on Power Electronics, 31(10), https://doi.org/10.1109/TPEL.2015.2511304

The paper proposes a method of active switching harmonics current reduction in the DC-link capacitor of a two-level, three-phase, back-to-back converter. Based on the derived analytical solution for switching harmonic currents in the DC-link, it is s... Read More about Active DC-link capacitor harmonic current reduction in two-level back-to-back converter.

An improved voltage compensation approach in a droop-controlled DC power system for the more electric aircraft (2015)
Journal Article
Gao, F., Bozhko, S., Asher, G., Wheeler, P., & Patel, C. (2015). An improved voltage compensation approach in a droop-controlled DC power system for the more electric aircraft. IEEE Transactions on Power Electronics, 31(10), https://doi.org/10.1109/TPEL.2015.2510285

This paper proposes an improved voltage regulation method in multi-source based DC electrical power system in the more electric aircraft. The proposed approach, which can be used in terrestrial DC microgrids as well, effectively improves the load sha... Read More about An improved voltage compensation approach in a droop-controlled DC power system for the more electric aircraft.

Functional modelling of symmetrical multi-pulse auto- transformer rectifier units for aerospace applications (2015)
Journal Article
Yang, T., Bozhko, S., & Asher, G. (2015). Functional modelling of symmetrical multi-pulse auto- transformer rectifier units for aerospace applications. IEEE Transactions on Power Electronics, 30(9), https://doi.org/10.1109/TPEL.2014.2364682

This paper aims to develop a functional model of symmetrical multi-pulse Auto-Transformer Rectifier Units (ATRUs) for More-Electric Aircraft (MEA) applications. The ATRU is seen as the most reliable way readily to be applied in the MEA. Interestingly... Read More about Functional modelling of symmetrical multi-pulse auto- transformer rectifier units for aerospace applications.

Active front-end rectifier modelling using dynamic phasors for more-electric aircraft applications (2015)
Journal Article
Yang, T., Bozhko, S., & Asher, G. (2015). Active front-end rectifier modelling using dynamic phasors for more-electric aircraft applications. IET Electrical Systems in Transportation, 5(2), https://doi.org/10.1049/iet-est.2014.0030

The More-Electric Aircraft (MEA) has become a dominant trend for next-generation aircraft. The Electrical Power System (EPS) on-board may take many forms: AC, DC, hybrid, frequency-wild, variable voltage, together with the possibility of novel connec... Read More about Active front-end rectifier modelling using dynamic phasors for more-electric aircraft applications.

Fast functional modelling of diode-bridge rectifier using dynamic phasors (2015)
Journal Article
Yang, T., Bozhko, S., & Asher, G. (2015). Fast functional modelling of diode-bridge rectifier using dynamic phasors. IET Power Electronics, 8(6), https://doi.org/10.1049/iet-pel.2014.0414

In this paper, a functional model for diode-bridge rectifiers is developed based on the dynamic phasor concept. The developed model is suitable for accelerated simulation studies of the electric power systems under normal, unbalanced and line faulty... Read More about Fast functional modelling of diode-bridge rectifier using dynamic phasors.

Dynamic phasor modelling of multi-generator variable frequency electrical power systems (2015)
Journal Article
Yang, T., Bozhko, S., Le-Peuvedic, J.-M., Asher, G., & Hill, C. I. (2016). Dynamic phasor modelling of multi-generator variable frequency electrical power systems. IEEE Transactions on Power Systems, 31(1), 563-571. https://doi.org/10.1109/TPWRS.2015.2399371

The Dynamic Phasor (DP) concept has been widely used in modelling electrical power systems. So far, the DP concept has been restricted to modelling systems with one single electrical source at a fixed fundamental frequency; either one generator or an... Read More about Dynamic phasor modelling of multi-generator variable frequency electrical power systems.