Skip to main content

Research Repository

Advanced Search

All Outputs (155)

Lattice Boltzmann simulation of flow and heat transfer in random porous media constructed by simulated annealing algorithm (2016)
Journal Article
Liu, M., Shi, Y., Yan, J., & Yan, Y. (2017). Lattice Boltzmann simulation of flow and heat transfer in random porous media constructed by simulated annealing algorithm. Applied Thermal Engineering, 115, https://doi.org/10.1016/j.applthermaleng.2016.12.107

In this article, the lattice Boltzmann (LB) method for transport phenomena is combined with the simulated annealing (SA) algorithm for digitized porous-medium construction to study flow and heat transfer in random porous media. Importantly, in contra... Read More about Lattice Boltzmann simulation of flow and heat transfer in random porous media constructed by simulated annealing algorithm.

Three dimensional lattice Boltzmann simulation for mixed convection of nanofluids in the presence of magnetic field (2016)
Journal Article
Zhou, W., Yan, Y., Xie, Y., & Liu, B. (2017). Three dimensional lattice Boltzmann simulation for mixed convection of nanofluids in the presence of magnetic field. International Communications in Heat and Mass Transfer, 80, https://doi.org/10.1016/j.icheatmasstransfer.2016.11.012

In the present study, a three dimensional thermal lattice Boltzmann model was developed to investigate the flow dynamics and mixed convection heat transfer of Al2O3/water nanofluid in a cubic cavity in the presence of magnetic field. The model was fi... Read More about Three dimensional lattice Boltzmann simulation for mixed convection of nanofluids in the presence of magnetic field.

Contrastive study of flow and heat transfer characteristics in a helically coiled tube under uniform heating and one-side heating (2016)
Journal Article
Misurati, K. A., Quan, Y., Gong, W., Xu, G., & Yan, Y. (2017). Contrastive study of flow and heat transfer characteristics in a helically coiled tube under uniform heating and one-side heating. Applied Thermal Engineering, 114, https://doi.org/10.1016/j.applthermaleng.2016.11.168

One-side heated helically coiled tubes, which are generally applied in various industrial applications such as the water cooled wall in power plant boilers though, have not been thoroughly studied. To investigate the flow and heat transfer characteri... Read More about Contrastive study of flow and heat transfer characteristics in a helically coiled tube under uniform heating and one-side heating.

Experimental study of a membrane-based dehumidification cooling system (2016)
Journal Article
Chen, Z., Zhu, J., Bai, H., Yan, Y., & Zhang, L. (2017). Experimental study of a membrane-based dehumidification cooling system. Applied Thermal Engineering, 115, https://doi.org/10.1016/j.applthermaleng.2016.10.153

Membrane-based liquid desiccant dehumidification has attracted increasing interests with elimination of solution droplets carryover problem. In this study, a membrane-based hybrid liquid desiccant dehumidification cooling system is developed, which i... Read More about Experimental study of a membrane-based dehumidification cooling system.

Mechanical durability of superhydrophobic surfaces: the role of surface modification technologies (2016)
Journal Article
Zhi, J.-H., Zhang, L.-Z., Yan, Y., & Zhu, J. (2017). Mechanical durability of superhydrophobic surfaces: the role of surface modification technologies. Applied Surface Science, 392, https://doi.org/10.1016/j.apsusc.2016.09.049

Various surface modification technologies have been used to develop superhydrophobic surface, however their durability has been recognized as the major obstacle for the real applications. Here a quantitative investigation was conducted to evaluate th... Read More about Mechanical durability of superhydrophobic surfaces: the role of surface modification technologies.

Performance prediction of PM 2.5 removal of real fibrous filters with a novel model considering rebound effect (2016)
Journal Article
Cai, R.-R., Zhang, L.-Z., & Yan, Y. (2017). Performance prediction of PM 2.5 removal of real fibrous filters with a novel model considering rebound effect. Applied Thermal Engineering, 111, https://doi.org/10.1016/j.applthermaleng.2016.07.162

Fibrous filters have been proved to be one of the most cost-effective way of particulate matters (specifically PM 2.5) purification. However, due to the complex structure of real fibrous filters, it is difficult to accurately predict the performance... Read More about Performance prediction of PM 2.5 removal of real fibrous filters with a novel model considering rebound effect.

A comprehensive review of thermoelectric technology: materials, applications, modelling and performance improvement (2016)
Journal Article
Twaha, S., Zhu, J., Yan, Y., & Li, B. (in press). A comprehensive review of thermoelectric technology: materials, applications, modelling and performance improvement. Renewable and Sustainable Energy Reviews, 65, https://doi.org/10.1016/j.rser.2016.07.034

Thermoelectric (TE) technology is regarded as alternative and environmentally friendly technology for harvesting and recovering heat which is directly converted into electrical energy using thermoelectric generators (TEG). Conversely, Peltier coolers... Read More about A comprehensive review of thermoelectric technology: materials, applications, modelling and performance improvement.

Experimental investigation of vapor chambers with different wick structures at various parameters (2016)
Journal Article
Li, Y., Li, Z., Zhou, W., Zeng, Z., Yan, Y., & Li, B. (2016). Experimental investigation of vapor chambers with different wick structures at various parameters. Experimental Thermal and Fluid Science, 77, 132-143. https://doi.org/10.1016/j.expthermflusci.2016.04.017

© 2016 Elsevier Inc. In this study, copper water vapor chambers (VCs) with two wick structures (copper foam and copper powder) are manufactured. An air-cooled test rig is designed to investigate the thermal performance. For copper-foam-based VCs (CFV... Read More about Experimental investigation of vapor chambers with different wick structures at various parameters.

Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle (2016)
Journal Article
Zou, H., Wang, W., Zhang, G., Qin, F., Tian, C., & Yan, Y. (2016). Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle. Energy Conversion and Management, 118, https://doi.org/10.1016/j.enconman.2016.03.066

An integrated thermal management system combining a heat pipe battery cooling/preheating system with the heat pump air conditioning system is presented to fulfill the comprehensive energy utilization for electric vehicles. A test bench with battery h... Read More about Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle.

Thermal performance of ultra-thin flattened heat pipes with composite wick structure (2016)
Journal Article
Li, Y., Zhou, W., He, J., Yan, Y., Li, B., & Zeng, Z. (2016). Thermal performance of ultra-thin flattened heat pipes with composite wick structure. Applied Thermal Engineering, 102, https://doi.org/10.1016/j.applthermaleng.2016.03.097

This study proposes three composite wick structures (copper power or mesh sintered on grooved tube), namely, single arch-shaped sintered–grooved wick (SSGW), bilateral arch-shaped sintered–grooved wick (BSGW), and mesh–grooved wick (MGW), to improve... Read More about Thermal performance of ultra-thin flattened heat pipes with composite wick structure.

Effect of resistive load on the performance of an organic Rankine cycle with a scroll expander (2016)
Journal Article
Zhua, J., Chen, Z., Huang, H., & Yan, Y. (2016). Effect of resistive load on the performance of an organic Rankine cycle with a scroll expander. Energy, 95, https://doi.org/10.1016/j.energy.2015.11.048

An experimental investigation is performed for an organic Rankine cycle system with different electrical resistive loads. The test rig is set up with a small scroll expander-generator unit, a boiler and a magnetically coupled pump. R134a is used as t... Read More about Effect of resistive load on the performance of an organic Rankine cycle with a scroll expander.

A Modified Ant Colony Optimization Algorithm for Network Coding Resource Minimization (2015)
Journal Article
Wang, Z., Xing, H., Li, T., Yang, Y., Qu, R., & Pan, Y. (2016). A Modified Ant Colony Optimization Algorithm for Network Coding Resource Minimization. IEEE Transactions on Evolutionary Computation, 20(3), 325-342. https://doi.org/10.1109/TEVC.2015.2457437

The paper presents a modified ant colony optimization approach for the network coding resource minimization problem. It is featured with several attractive mechanisms specially devised for solving the network coding resource minimization problem: 1)... Read More about A Modified Ant Colony Optimization Algorithm for Network Coding Resource Minimization.

Methane adsorption in metal-organic frameworks containing nanographene linkers: a computational study (2014)
Journal Article
Bichoutskaia, E., Suyetin, M., Bound, M., Yong, Y., & Schröder, M. (2014). Methane adsorption in metal-organic frameworks containing nanographene linkers: a computational study. Journal of Physical Chemistry C, 118(29), https://doi.org/10.1021/jp503210h

Metal-organic framework (MOF) materials are known to be amenable to expansion through elongation of the parent organic linker. For a family of model (3,24)-connected MOFs with the rht topology, in which the central part of organic linker comprises a... Read More about Methane adsorption in metal-organic frameworks containing nanographene linkers: a computational study.

Power conditioning of thermoelectric generated power using dc-dc converters: a case study of a boost converter
Presentation / Conference Contribution
Twaha, S., Zhu, J., & Yan, Y. (in press). Power conditioning of thermoelectric generated power using dc-dc converters: a case study of a boost converter.

The near exhaustion of non-renewable energy resources such as fossil fuels followed by disastrous climatic changes have alerted the world to invest in alternative energy sources. Thermoelectric (TE) technology is responsible for innovating TE devices... Read More about Power conditioning of thermoelectric generated power using dc-dc converters: a case study of a boost converter.