Skip to main content

Research Repository

Advanced Search

All Outputs (160)

Effects of Bionic Models with Simultaneous Thermal Fatigue and Wear Resistance (2021)
Book Chapter
Yu, D., Zhou, T., Zhou, H., Lu, H., Bo, H., & Yan, Y. (2021). Effects of Bionic Models with Simultaneous Thermal Fatigue and Wear Resistance. In Y. Yan (Ed.), Advances in Heat Transfer and Thermal Engineering : Proceedings of 16th UK Heat Transfer Conference (UKHTC2019) (903-907). Springer Singapore

Transient numerical modelling of a thermoelectric generator system used for automotive exhaust waste heat recovery (2021)
Journal Article
Luo, D., Wang, R., Yan, Y., Yu, W., & Zhou, W. (2021). Transient numerical modelling of a thermoelectric generator system used for automotive exhaust waste heat recovery. Applied Energy, 297, Article 117151. https://doi.org/10.1016/j.apenergy.2021.117151

The automotive thermoelectric generator system is a promising technology of exhaust waste heat recovery, but reasonable theoretical models to predict its dynamic performance are lacking. In this work, a transient fluid-thermal-electric multiphysics c... Read More about Transient numerical modelling of a thermoelectric generator system used for automotive exhaust waste heat recovery.

Thermal process enhancement of HNCPCM filled heat sink: Effect of hybrid nanoparticles ratio and shape (2021)
Journal Article
Arshad, A., Jabbal, M., Faraji, H., Bashir, M. A., Talebizadehsardari, P., & Yan, Y. (2021). Thermal process enhancement of HNCPCM filled heat sink: Effect of hybrid nanoparticles ratio and shape. International Communications in Heat and Mass Transfer, 125, Article 105323. https://doi.org/10.1016/j.icheatmasstransfer.2021.105323

The present study based on the numerical investigation of a hybrid nanocomposite phase change material (HNCPCM) filled heat sink for passive cooling of electronic devices. The combination of graphene oxide (GO) and silver (Ag) hybrid nanoparticles ar... Read More about Thermal process enhancement of HNCPCM filled heat sink: Effect of hybrid nanoparticles ratio and shape.

Numerical study of nanocomposite phase change material-based heat sink for the passive cooling of electronic components (2021)
Journal Article
Arshad, A., Jabbal, M., Faraji, H., Talebizadehsardari, P., Bashir, M. A., & Yan, Y. (2021). Numerical study of nanocomposite phase change material-based heat sink for the passive cooling of electronic components. Heat and Mass Transfer, https://doi.org/10.1007/s00231-021-03065-2

The current two-dimensional (2D) numerical study presents the melting phenomenon and heat transfer performance of the nanocomposite phase change material (NCPCM) based heat sink. Metallic nanoparticles (copper: Cu) of different volume fractions of 0.... Read More about Numerical study of nanocomposite phase change material-based heat sink for the passive cooling of electronic components.

Thermal properties of PEG/MOF-5 regularized nanoporous composite phase change materials: A molecular dynamics simulation (2021)
Journal Article
Li, P., Feng, D., Feng, Y., Zhang, J., Yan, Y., & Zhang, X. (2021). Thermal properties of PEG/MOF-5 regularized nanoporous composite phase change materials: A molecular dynamics simulation. Case Studies in Thermal Engineering, 26, Article 101027. https://doi.org/10.1016/j.csite.2021.101027

In this paper, a metal-organic framework MOF-5 loaded polyethylene glycol (PEG) nanowire was used to form composite phase change material PEG/MOF-5. The molecular dynamics method was used to simulate the thermal conductivity, melting point and latent... Read More about Thermal properties of PEG/MOF-5 regularized nanoporous composite phase change materials: A molecular dynamics simulation.

Polyethylene glycol phase change material embedded in a hierarchical porous carbon with superior thermal storage capacity and excellent stability (2021)
Journal Article
Feng, D.-L., Zang, Y.-Y., Li, P., Feng, Y.-H., Yan, Y.-Y., & Zhang, X.-X. (2021). Polyethylene glycol phase change material embedded in a hierarchical porous carbon with superior thermal storage capacity and excellent stability. Composites Science and Technology, 210, Article 108832. https://doi.org/10.1016/j.compscitech.2021.108832

Hierarchical porous materials are recommended to trade off the mismatch between high loading and efficient crystallization in pore-based composite phase change materials (PCMs), coupling the functions of expanded pores (mesopores and macropores) alon... Read More about Polyethylene glycol phase change material embedded in a hierarchical porous carbon with superior thermal storage capacity and excellent stability.

Experimental and kinetic study on the laminar burning speed, Markstein length and cellular instability of oxygenated fuels (2021)
Journal Article
Wang, Q., Sun, W., Guo, L., Lin, S., Cheng, P., Zhang, H., & Yan, Y. (2021). Experimental and kinetic study on the laminar burning speed, Markstein length and cellular instability of oxygenated fuels. Fuel, 297, Article 120754. https://doi.org/10.1016/j.fuel.2021.120754

The laminar burning speed, Markstein length and cellular instability of three oxygenated fuels, polyoxymethylene dimethyl ether 3 (PODE3), dimethyl carbonate (DMC) and n-butanol (NB), were experimentally studied using spherical flame propagation meth... Read More about Experimental and kinetic study on the laminar burning speed, Markstein length and cellular instability of oxygenated fuels.

Melting and thermodynamic properties of nanoscale binary chloride salt as high-temperature energy storage material (2021)
Journal Article
Zhang, S., & Yan, Y. (2021). Melting and thermodynamic properties of nanoscale binary chloride salt as high-temperature energy storage material. Case Studies in Thermal Engineering, 25, Article 100973. https://doi.org/10.1016/j.csite.2021.100973

Phase change heat transfer in nanoporous shape-stabilised phase change materials (ss-PCMs) is of great importance for the efficient utilization of novel energy storage materials. However, the lack of thermodynamic properties hinders the study on phas... Read More about Melting and thermodynamic properties of nanoscale binary chloride salt as high-temperature energy storage material.

Wet steam flow and condensation loss in turbine blade cascades (2021)
Journal Article
Wen, C., Yang, Y., Ding, H., Sun, C., & Yan, Y. (2021). Wet steam flow and condensation loss in turbine blade cascades. Applied Thermal Engineering, 189, Article 116748. https://doi.org/10.1016/j.applthermaleng.2021.116748

This study develops a wet steam modelling to solve the phase change process inside the blade cascade of a steam turbine. The comparative study is carried out to understand the impact of the dry gas model and wet steam model on predicting the flow beh... Read More about Wet steam flow and condensation loss in turbine blade cascades.

Numerical investigation on the dynamic response characteristics of a thermoelectric generator module under transient temperature excitations (2021)
Journal Article
Luo, D., Yan, Y., Wang, R., & Zhou, W. (2021). Numerical investigation on the dynamic response characteristics of a thermoelectric generator module under transient temperature excitations. Renewable Energy, 170, 811-823. https://doi.org/10.1016/j.renene.2021.02.026

In this work, a three-dimensional transient numerical model of a thermoelectric generator module considering the temperature-dependent properties and the topological connection of load resistance is proposed to study its dynamic response characterist... Read More about Numerical investigation on the dynamic response characteristics of a thermoelectric generator module under transient temperature excitations.

Anisotropic scattering characteristics of nanoparticles in different morphologies: improving the temperature uniformity of tumors during thermal therapy using forward scattering (2021)
Journal Article
Chen, Q., Ren, Y., Yin, Y., & Qi, H. (2021). Anisotropic scattering characteristics of nanoparticles in different morphologies: improving the temperature uniformity of tumors during thermal therapy using forward scattering. Biomedical Optics Express, 12(2), 893-906. https://doi.org/10.1364/BOE.415666

Precise control of the thermal damage area is the key issue during thermal therapy, which can be achieved by manipulating the light propagation in biological tissue. In the present work, a method is proposed to increase the uniformity of the specific... Read More about Anisotropic scattering characteristics of nanoparticles in different morphologies: improving the temperature uniformity of tumors during thermal therapy using forward scattering.

Investigation on the droplet evaporation process on local heated substrates with different wettability (2020)
Journal Article
Yan, Y., Wang, X., Liu, Z., & Wang, L. (2020). Investigation on the droplet evaporation process on local heated substrates with different wettability. Heat and Mass Transfer, https://doi.org/10.1007/s00231-020-03005-6

Marangoni effect is one of the critical factors in the droplet evaporation process, which is caused by surface tension gradient in the droplet interface. In this study, local heating is adopted to provide a more complicated temperature distribution o... Read More about Investigation on the droplet evaporation process on local heated substrates with different wettability.

The effects of bio-inspired micro/nano scale structures on anti-icing properties (2020)
Journal Article
Gao, H., Jian, Y., & Yan, Y. (2021). The effects of bio-inspired micro/nano scale structures on anti-icing properties. Soft Matter, 17(3), 447-466. https://doi.org/10.1039/d0sm01683g

Ice formation and accumulation have detrimental effects on commercial surfaces and people's lives. The ice adhesion strength decreases with increasing surface hydrophobicity, and the superhydrophobicity of a surface can be constructed by a combinatio... Read More about The effects of bio-inspired micro/nano scale structures on anti-icing properties.

Development of TiO2/RT–35HC based nanocomposite phase change materials (NCPCMs) for thermal management applications (2020)
Journal Article
Arshad, A., Jabbal, M., Shi, L., Darkwa, J., Weston, N. J., & Yan, Y. (2021). Development of TiO2/RT–35HC based nanocomposite phase change materials (NCPCMs) for thermal management applications. Sustainable Energy Technologies and Assessments, 43, Article 100865. https://doi.org/10.1016/j.seta.2020.100865

This experimental study covers the development of novel nanocomposite phase change materials (NCPCMs) based on RT–35HC as a phase change material (PCM) and titanium oxide (TiO2) as thermal conductivity enhancement material, for thermal management app... Read More about Development of TiO2/RT–35HC based nanocomposite phase change materials (NCPCMs) for thermal management applications.

Thermal Management of Electrified Propulsion System for Low-Carbon Vehicles (2020)
Journal Article
Li, B., Kuo, H., Wang, X., Chen, Y., Wang, Y., Gerada, D., …Yan, Y. (2020). Thermal Management of Electrified Propulsion System for Low-Carbon Vehicles. Automotive Innovation, 3(4), 299-316. https://doi.org/10.1007/s42154-020-00124-y

An overview of current thermal challenges in transport electrification is introduced in order to underpin the research developments and trends of recent thermal management techniques. Currently, explorations of intelligent thermal management and cont... Read More about Thermal Management of Electrified Propulsion System for Low-Carbon Vehicles.

Thermal Analyses of Power Electronics Integrated with Vapour Chamber Cooling (2020)
Journal Article
Chen, Y., Yan, Y., & Li, B. (2020). Thermal Analyses of Power Electronics Integrated with Vapour Chamber Cooling. Automotive Innovation, 3(4), 328-335. https://doi.org/10.1007/s42154-020-00123-z

Insulated gate bipolar transistor (IGBT) power module is used for power switching transistor devices in the power supply and motor control circuits in both hybrid electric vehicles and electric vehicles. The target of heat flux of IGBT is continuousl... Read More about Thermal Analyses of Power Electronics Integrated with Vapour Chamber Cooling.

Using mesoporous carbon to pack polyethylene glycol as a shape-stabilized phase change material with excellent energy storage capacity and thermal conductivity (2020)
Journal Article
Feng, D., Li, P., Feng, Y., Yan, Y., & Zhang, X. (2021). Using mesoporous carbon to pack polyethylene glycol as a shape-stabilized phase change material with excellent energy storage capacity and thermal conductivity. Microporous and Mesoporous Materials, 310, Article 110631. https://doi.org/10.1016/j.micromeso.2020.110631

A novel shape-stabilized phase change material was successfully prepared using polyethylene glycol (PEG) as PCM and mesoporous carbon FDU-15 as support via the melting impregnation method. The structural and thermal properties of materials were measu... Read More about Using mesoporous carbon to pack polyethylene glycol as a shape-stabilized phase change material with excellent energy storage capacity and thermal conductivity.