Skip to main content

Research Repository

Advanced Search

All Outputs (71)

Asynchronous learning-based output feedback sliding mode control for semi-Markov jump systems: a descriptor approach (2024)
Journal Article
Wu, Z., Zhao, Y., Li, F., Yang, T., Shi, Y., & Gui, W. (2024). Asynchronous learning-based output feedback sliding mode control for semi-Markov jump systems: a descriptor approach. IEEE/CAA Journal of Automatica Sinica, 11(6), 1358–1369. https://doi.org/10.1109/jas.2024.124416

This paper presents an asynchronous output-feedback control strategy of semi-Markovian systems via sliding mode-based learning technique. Compared with most literature results that require exact prior knowledge of system state and mode information, a... Read More about Asynchronous learning-based output feedback sliding mode control for semi-Markov jump systems: a descriptor approach.

Parasitic Inductance Impact of a High-Turn-Ratio Half Bridge Active Clamped Converter for More-Electric Aircraft Applications (2024)
Presentation / Conference Contribution
Zhu, Y., Yang, T., Wang, Z., Yan, X., Bozhko, S., & Wheeler, P. (2024). Parasitic Inductance Impact of a High-Turn-Ratio Half Bridge Active Clamped Converter for More-Electric Aircraft Applications. In 2024 IEEE Applied Power Electronics Conference and Exposition (APEC) (2226-2231). https://doi.org/10.1109/APEC48139.2024.10509461

Within a More-Electric Aircraft (MEA) dc power distribution system, Half-Bridge-Active-Clamped (HBAC) converters can be used to control the power transfer between different dc buses, for example, between +/-270V to 28V dc buses. However, due to the r... Read More about Parasitic Inductance Impact of a High-Turn-Ratio Half Bridge Active Clamped Converter for More-Electric Aircraft Applications.

Power Flow Analysis of Advanced Power Generation Centre for More Electric Aircraft (2023)
Presentation / Conference Contribution
Bai, G., Bozhko, S., Yang, T., Wheeler, P., & Yeoh, S. S. (2023). Power Flow Analysis of Advanced Power Generation Centre for More Electric Aircraft. . https://doi.org/10.1109/itecasia-pacific59272.2023.10372301

The more-electric aircraft (MEA) has been seen as the most major trend in the aerospace industry. With the increase in electrified loads, there is the need to generate more electrical power on-board aircraft. Considering regional jet sized aircraft,... Read More about Power Flow Analysis of Advanced Power Generation Centre for More Electric Aircraft.

A Low-Complexity Artificial Neural Network-Based Optimal Droop Gain Design Strategy for DC Microgrids Onboard the More Electric Aircraft (2023)
Journal Article
Hussaini, H., Yang, T., Bai, G., Urrutia-Ortiz, M., & Bozhko, S. (2023). A Low-Complexity Artificial Neural Network-Based Optimal Droop Gain Design Strategy for DC Microgrids Onboard the More Electric Aircraft. IEEE Transactions on Transportation Electrification, https://doi.org/10.1109/TTE.2023.3333270

This article proposes a new droop control design method based on a “reversed data training” of artificial neural network (ANN). Conventionally, after data collection, the ANN is used for forward mapping the control variables (inputs) and system respo... Read More about A Low-Complexity Artificial Neural Network-Based Optimal Droop Gain Design Strategy for DC Microgrids Onboard the More Electric Aircraft.

An Advanced Dual-Carrier-Based Multi-Optimized PWM Strategy of Three-Level Neutral-Point-Clamped Converters for More-Electric-Aircraft Applications (2023)
Journal Article
Guo, F., M. Diab, A., Shen Yeoh, S., Yang, T., Bozhko, S., Wheeler, P., & Zhao, Y. (2024). An Advanced Dual-Carrier-Based Multi-Optimized PWM Strategy of Three-Level Neutral-Point-Clamped Converters for More-Electric-Aircraft Applications. IEEE Transactions on Energy Conversion, 39(1), 356-367. https://doi.org/10.1109/TEC.2023.3312599

Since three-level neutral-point-clamped (3L-NPC) power generation units bring much competitiveness to the next-generation electric starter/generator (ESG) system for more-electric-aircraft (MEA) applications, the versatile multi-optimized pulse-width... Read More about An Advanced Dual-Carrier-Based Multi-Optimized PWM Strategy of Three-Level Neutral-Point-Clamped Converters for More-Electric-Aircraft Applications.

Dual Phase Shift Modulation Investigation of Half-Bridge-Active-Clamp Converter for Future Electrified Aircraft Applications (2023)
Presentation / Conference Contribution
Yan, X., Zhu, Y., Wang, Z., Yang, T., Bozhko, S., & Wheeler, P. (2023). Dual Phase Shift Modulation Investigation of Half-Bridge-Active-Clamp Converter for Future Electrified Aircraft Applications. In 2023 IEEE Workshop on Power Electronics for Aerospace Applications (PEASA). https://doi.org/10.1109/PEASA58318.2023.10235704

Half bridge active clamp (HBAC) converter is designed for the achievement of a wider voltage conversion range, and it is employed to interface the power transfer between the high voltage and low voltage DC buses in future electrified aircraft applica... Read More about Dual Phase Shift Modulation Investigation of Half-Bridge-Active-Clamp Converter for Future Electrified Aircraft Applications.

Control Strategy of Advanced Power Generation Architecture for More-Electric Aircraft Applications (2023)
Presentation / Conference Contribution
Bai, G., Yang, T., Yeoh, S. S., Bozhko, S., & Wheeler, P. (2023). Control Strategy of Advanced Power Generation Architecture for More-Electric Aircraft Applications. In 2023 IEEE Workshop on Power Electronics for Aerospace Applications (PEASA). https://doi.org/10.1109/PEASA58318.2023.10235443

To meet the increasing electrical power demand on More Electrical Aircraft (MEA), an advanced power generation architecture (APGA) is proposed. Within the APGA, both two generators produce electrical power and feed loads to the main DC bus through th... Read More about Control Strategy of Advanced Power Generation Architecture for More-Electric Aircraft Applications.

Artificial Intelligence-Based Hierarchical Control Design for Current Sharing and Voltage Restoration in DC Microgrid of the More Electric Aircraft (2023)
Journal Article
Hussaini, H., Yang, T., Bai, G., Urrutia-Ortiz, M., & Bozhko, S. (2024). Artificial Intelligence-Based Hierarchical Control Design for Current Sharing and Voltage Restoration in DC Microgrid of the More Electric Aircraft. IEEE Transactions on Transportation Electrification, 10(1), 566-582. https://doi.org/10.1109/tte.2023.3289773

In the conventional droop control method employed in the primary control layer, there is an inherent tradeoff between current-sharing accuracy and voltage regulation. Consequently, to achieve both accurate current sharing and maintain the bus voltage... Read More about Artificial Intelligence-Based Hierarchical Control Design for Current Sharing and Voltage Restoration in DC Microgrid of the More Electric Aircraft.

Simplified Modelling and Control of Dual Active Bridge Converter for Future Electrified Aerospace Application (2023)
Presentation / Conference Contribution
Yan, X., Zhu, Y., Wang, Z., Yang, T., Bozhko, S., & Wheeler, P. (2023). Simplified Modelling and Control of Dual Active Bridge Converter for Future Electrified Aerospace Application. In 2023 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC). https://doi.org/10.1109/ESARS-ITEC57127.2023.10114863

Dual active bridge converter (DAB) is an important power electronics in the DC distribution system of electric aircraft. It is used to convert generated high DC voltage to lower DC voltage, and it can be used between battery and low voltage bus to st... Read More about Simplified Modelling and Control of Dual Active Bridge Converter for Future Electrified Aerospace Application.

Optimal Droop Control Design Using Artificial Intelligent Techniques for Electric Power Systems of More-Electric Aircraft (2023)
Journal Article
Hussaini, H., Yang, T., Gao, Y., Wang, C., Urrutia, M., & Bozhko, S. (2024). Optimal Droop Control Design Using Artificial Intelligent Techniques for Electric Power Systems of More-Electric Aircraft. IEEE Transactions on Transportation Electrification, 10(1), 2192-2206. https://doi.org/10.1109/tte.2023.3271763

The design of the droop coefficient is one of the challenges for the droop control of converters, as it plays a key role in enhancing the performance of the droop control method. This article proposes an artificial neural network (ANN) based techniqu... Read More about Optimal Droop Control Design Using Artificial Intelligent Techniques for Electric Power Systems of More-Electric Aircraft.

An Advanced Power Generation Architecture for More-Electric Aircraft Applications (2023)
Presentation / Conference Contribution
Bai, G., Yang, T., Yeoh, S. S., Bozhko, S., & Wheeler, P. (2023). An Advanced Power Generation Architecture for More-Electric Aircraft Applications. . https://doi.org/10.1109/esars-itec57127.2023.10114848

The trend towards development of More Electric Aircraft (MEA) has been driven by increased fuel fossil prices and stricter environmental policies. With breakthroughs in power electronic systems and electrical machines, the targets of MEA to reduce th... Read More about An Advanced Power Generation Architecture for More-Electric Aircraft Applications.

An Improved Model Predictive Torque Control for PMSM Drives Based on Discrete Space Vector Modulation (2023)
Journal Article
Zhang, W., Yang, Y., Fan, M., He, L., Ji, A., Xiao, Y., …Rodriguez, J. (2023). An Improved Model Predictive Torque Control for PMSM Drives Based on Discrete Space Vector Modulation. IEEE Transactions on Power Electronics, 38(6), 7535-7545. https://doi.org/10.1109/TPEL.2023.3257399

In this article, an improved model predictive torque control (MPTC) method based on discrete space vector modulation (DSVM) is proposed for permanent magnet synchronous motor (PMSM) drives. Aiming at solving the two problems of large torque ripples a... Read More about An Improved Model Predictive Torque Control for PMSM Drives Based on Discrete Space Vector Modulation.

Fundamental PWM Excitation Based Rotor Position Estimation for a Dual Three-Phase Permanent Magnet Synchronous Machine (2022)
Journal Article
Chen, H., Gao, Q., Yang, T., & Sumner, M. (2023). Fundamental PWM Excitation Based Rotor Position Estimation for a Dual Three-Phase Permanent Magnet Synchronous Machine. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 4(2), 659-668. https://doi.org/10.1109/jestie.2022.3223880

Two rotor position estimation methods for a dual three-phase (DTP) permanent magnet synchronous machine (PMSM) are investigated in this paper, where the rotor position is estimated by exploiting the saliency of the motor through the phase current der... Read More about Fundamental PWM Excitation Based Rotor Position Estimation for a Dual Three-Phase Permanent Magnet Synchronous Machine.

Inverse application of artificial intelligence for the control of power converters (2022)
Journal Article
Gao, Y., Wang, S., Hussaini, H., Yang, T., Dragicevic, T., Bozhko, S., …Vazquez, S. (2022). Inverse application of artificial intelligence for the control of power converters. IEEE Transactions on Power Electronics, https://doi.org/10.1109/TPEL.2022.3209093

This paper proposes a novel application method, Inverse Application of Artificial Intelligence (IAAI) for the control of power electronic converter systems. The proposed method can give the desired control coefficients/references in a simple way beca... Read More about Inverse application of artificial intelligence for the control of power converters.

Speed/Torque Ripple Reduction of High-speed Permanent Magnet Starters/Generators with Low Inductance for More Electric Aircraft Applications (2022)
Journal Article
Zhang, X., Yang, T., & Bozhko, S. (2022). Speed/Torque Ripple Reduction of High-speed Permanent Magnet Starters/Generators with Low Inductance for More Electric Aircraft Applications. IEEE Transactions on Transportation Electrification, 8, 4431-4443. https://doi.org/10.1109/TTE.2022.3194972

With the electrification trend of future aircraft, high-speed Permanent Magnet Starters/Generators (PMS/Gs) will potentially be widely used in onboard generation systems due to their high power density and high efficiency. However, the per-unit react... Read More about Speed/Torque Ripple Reduction of High-speed Permanent Magnet Starters/Generators with Low Inductance for More Electric Aircraft Applications.

Hybrid Active Modulation Strategy for Three-Level Neutral-Point-Clamped Converters in High-Speed Aerospace Drives (2022)
Journal Article
Guo, F., Yang, T., Diab, A. M., Huang, Z., Yeoh, S. S., Bozhko, S., & Wheeler, P. (2023). Hybrid Active Modulation Strategy for Three-Level Neutral-Point-Clamped Converters in High-Speed Aerospace Drives. IEEE Transactions on Industrial Electronics, 70(4), 3449-3460. https://doi.org/10.1109/tie.2022.3176309

In the aircraft electric starter/generator system, the three-level neutral-point-clamped converters play a crucial role in driving turbofan engines and delivering onboard electrical power. However, the conventional pulsewidth modulation (PWM) strateg... Read More about Hybrid Active Modulation Strategy for Three-Level Neutral-Point-Clamped Converters in High-Speed Aerospace Drives.

Comparative Study of Sensorless Methods Based on Sliding Mode Observer for Dual Three-Phase Permanent Magnet Synchronous Machine (2021)
Presentation / Conference Contribution
Fan, L., Yang, T., Chen, Y., & Bozhko, S. (2021). Comparative Study of Sensorless Methods Based on Sliding Mode Observer for Dual Three-Phase Permanent Magnet Synchronous Machine. In The 10th International Conference on Power Electronics, Machines and Drives (PEMD 2020) (850-854). https://doi.org/10.1049/icp.2021.1133

In recent years, increased attentions have been given to multiphase electrical machines because of their fault tolerance ability which is quite important for more-electric aircraft application. A dual three-phase PMSM for turboprop aircraft green tax... Read More about Comparative Study of Sensorless Methods Based on Sliding Mode Observer for Dual Three-Phase Permanent Magnet Synchronous Machine.

An Advanced Modulation Technique Featuring Neutral Point Voltage Ripple Suppression of Three-Level Converters in High-Speed Drives (2021)
Journal Article
Li, C., Yang, T., Huang, Z., Yeoh, S. S., Bozhko, S., & Wheeler, P. (2021). An Advanced Modulation Technique Featuring Neutral Point Voltage Ripple Suppression of Three-Level Converters in High-Speed Drives. IEEE Access, 9, 144805-144819. https://doi.org/10.1109/access.2021.3122922

This paper introduces an advanced space vector modulation technique for three-level neutral-point-clamped (3L-NPC) converters. The studied 3L-NPC converters within aircraft electric starter generator (ESG) systems normally operate at high modulation... Read More about An Advanced Modulation Technique Featuring Neutral Point Voltage Ripple Suppression of Three-Level Converters in High-Speed Drives.

An Enhanced Droop Control Method for multi-source Electric Power System of More Electric Aircraft (2021)
Presentation / Conference Contribution
Hussaini, H., Yang, T., Wang, C., & Bozho, S. (2021, October). An Enhanced Droop Control Method for multi-source Electric Power System of More Electric Aircraft. Paper presented at MEA2021, Bordeaux, France

The more electric aircraft concept has been identified as the major trend of future aircraft. The DC distribution network where multiple electrical sources are connected to a common HVDC bus is a promising architecture for more electric aircraft appl... Read More about An Enhanced Droop Control Method for multi-source Electric Power System of More Electric Aircraft.

A Simple PWM Strategy for Three-Level NPC Converters in Aircraft Electric Starter/Generator System With Improved DC-Link Voltage Utilization and Reduced Common-Mode Voltage (2021)
Presentation / Conference Contribution
Guo, F., Yang, T., Yeoh, S. S., Bozhko, S., Wheeler, P., & Diab, A. M. (2021). A Simple PWM Strategy for Three-Level NPC Converters in Aircraft Electric Starter/Generator System With Improved DC-Link Voltage Utilization and Reduced Common-Mode Voltage. . https://doi.org/10.1109/ECCE47101.2021.9595933

Due to the employment of three-level neutral-point-clamped (3L-NPC) converters in the aircraft electric starter/generator (ESG) systems, the pulse-width-modulation (PWM) strategy plays a significant role in the converter-fed PMSM drives. However, the... Read More about A Simple PWM Strategy for Three-Level NPC Converters in Aircraft Electric Starter/Generator System With Improved DC-Link Voltage Utilization and Reduced Common-Mode Voltage.