Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Environmental Impacts of Selective Laser Melting: Do Printer, Powder, Or Power Dominate? (2016)
Journal Article
Faludi, J., Baumers, M., Maskery, I., & Hague, R. (2017). Environmental Impacts of Selective Laser Melting: Do Printer, Powder, Or Power Dominate?. Journal of Industrial Ecology, 21(S1), S144-S156. https://doi.org/10.1111/jiec.12528

© 2016 The Authors. Journal of Industrial Ecology, published by Wiley Periodicals, Inc., on behalf of Yale University. This life cycle assessment measured environmental impacts of selective laser melting, to determine where most impacts arise: machin... Read More about Environmental Impacts of Selective Laser Melting: Do Printer, Powder, Or Power Dominate?.

A new photocrosslinkable polycaprolactone based ink for three dimensional inkjet printing (2016)
Journal Article
He, Y., Tuck, C., Prina, E., Kilsby, S., Christie, S. D., Edmondson, S., …Wildman, R. D. (2017). A new photocrosslinkable polycaprolactone based ink for three dimensional inkjet printing. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(6), 1645-1657. https://doi.org/10.1002/jbm.b.33699

A new type of photocrosslinkable polycaprolactone (PCL)-based ink that is suitable for three-dimensional (3D) inkjet printing has been developed. Photocrosslinkable PCL dimethylacrylate was synthesized and mixed with poly(ethylene glycol) diacrylate... Read More about A new photocrosslinkable polycaprolactone based ink for three dimensional inkjet printing.

Metallurgy of high-silicon steel parts produced using selective laser melting (2016)
Journal Article
Garibaldi, M., Ashcroft, I., Simonelli, M., & Hague, R. (2016). Metallurgy of high-silicon steel parts produced using selective laser melting. Acta Materialia, 110, https://doi.org/10.1016/j.actamat.2016.03.037

The metallurgy of high-silicon steel (6.9%wt.Si) processed using Selective Laser Melting (SLM) is presented for the first time in this study. High-silicon steel has great potential as a soft magnetic alloy, but its employment has been limited due to... Read More about Metallurgy of high-silicon steel parts produced using selective laser melting.

Shape complexity and process energy consumption in electron beam melting: a case of something for nothing in additive manufacturing? (2016)
Journal Article
Baumers, M., Tuck, C., Wildman, R. D., Ashcroft, I., & Hague, R. J. (in press). Shape complexity and process energy consumption in electron beam melting: a case of something for nothing in additive manufacturing?. Journal of Industrial Ecology, https://doi.org/10.1111/jiec.12397

Additive manufacturing (AM) technology is capable of building up component geometry in a layer-by-layer process, entirely without tools, molds, or dies. One advantage of the approach is that it is capable of efficiently creating complex product geome... Read More about Shape complexity and process energy consumption in electron beam melting: a case of something for nothing in additive manufacturing?.

Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using x-ray computed tomography (2016)
Journal Article
Maskery, I., Aboulkhair, N., Corfield, M., Tuck, C., Clare, A., Leach, R. K., …Hague, R. J. (2016). Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using x-ray computed tomography. Materials Characterization, 111, https://doi.org/10.1016/j.matchar.2015.12.001

We used X-ray computed tomography (CT), microscopy and hardness measurements to study Al–Si10–Mg produced by selective laser melting (SLM). Specimens were subject to a series of heat treatments including annealing and precipitation hardening. The spe... Read More about Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using x-ray computed tomography.