Skip to main content

Research Repository

Advanced Search

All Outputs (4)

Phosphite treatment can improve root biomass and nutrition use efficiency in wheat (2022)
Journal Article
Mohammed, U., Davis, J., Rossall, S., Swarup, K., Czyzewicz, N., Bhosale, R., …Swarup, R. (2022). Phosphite treatment can improve root biomass and nutrition use efficiency in wheat. Frontiers in Plant Science, 13, Article 1017048. https://doi.org/10.3389/fpls.2022.1017048

Phosphite represents a reduced form of phosphate that belongs to a class of crop growth-promoting chemicals termed biostimulants. Previous research has shown that phosphite application can enhance root growth, but its underlying mechanism, especially... Read More about Phosphite treatment can improve root biomass and nutrition use efficiency in wheat.

Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism (2022)
Journal Article
Fusi, R., Rosignoli, S., Lou, H., Sangiorgi, G., Bovina, R., Pattem, J. K., …Salvi, S. (2022). Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism. Proceedings of the National Academy of Sciences,

Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus anti-gravitropic offset (AGO) mechanisms. Here we report a new root angle regulatory gene termed ENHANCED GRA... Read More about Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism.

Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms (2022)
Journal Article
Huang, G., Kilic, A., Karady, M., Zhang, J., Mehra, P., Song, X., …Pandey, B. K. (2022). Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms. Proceedings of the National Academy of Sciences, 119(30), Article e2201072119. https://doi.org/10.1073/pnas.2201072119

Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene... Read More about Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms.

Root traits for low input agroecosystems in Africa: Lessons from three case studies (2022)
Journal Article
Ndoye, M. S., Burridge, J., Bhosale, R., Grondin, A., & Laplaze, L. (2022). Root traits for low input agroecosystems in Africa: Lessons from three case studies. Plant, Cell and Environment, 45(3), 637-649. https://doi.org/10.1111/pce.14256

In many regions across Africa, agriculture is largely based on low-input and small-holder farming systems that use little inorganic fertilisers and have limited access to irrigation and mechanisation. Improving agricultural practices and developing n... Read More about Root traits for low input agroecosystems in Africa: Lessons from three case studies.