Skip to main content

Research Repository

Advanced Search

All Outputs (8)

The expanding role of cap-adjacent modifications in animals (2024)
Journal Article
Bellows, E., Fray, R. G., Knight, H. M., & Archer, N. (2024). The expanding role of cap-adjacent modifications in animals. Frontiers in RNA Research, 2, Article 1485307. https://doi.org/10.3389/frnar.2024.1485307

Eukaryotic mRNA cap structures directly influence mRNA stability, translation, and immune recognition. While the significance of the mRNA cap itself has been well-established, recent research has revealed the intricate modifications to the nucleotide... Read More about The expanding role of cap-adjacent modifications in animals.

Epitranscriptomic mechanisms of androgen signalling and prostate cancer (2024)
Journal Article
Patke, R., Harris, A. E., Woodcock, C. L., Thompson, R., Santos, R., Kumari, A., Allegrucci, C., Archer, N., Gudas, L. J., Robinson, B. D., Persson, J. L., Fray, R., Jeyapalan, J., Rutland, C. S., Rakha, E., Madhusudan, S., Emes, R. D., Muyangwa-Semenova, M., Alsaleem, M., de Brot, S., …Lothion-Roy, J. (2024). Epitranscriptomic mechanisms of androgen signalling and prostate cancer. Neoplasia, 56, Article 101032. https://doi.org/10.1016/j.neo.2024.101032

Prostate cancer (PCa) is the second most common cancer diagnosed in men. While radical prostatectomy and radiotherapy are often successful in treating localised disease, post-treatment recurrence is common. As the androgen receptor (AR) and androgen... Read More about Epitranscriptomic mechanisms of androgen signalling and prostate cancer.

Comparative transcriptome reprogramming in oak galls containing asexual or sexual generations of gall wasps (2024)
Journal Article
Bellows, E., Heatley, M., Shah, N., Archer, N., Giles, T., & Fray, R. (2024). Comparative transcriptome reprogramming in oak galls containing asexual or sexual generations of gall wasps. Plant Biology, 26(5), 798-810. https://doi.org/10.1111/plb.13670

Oak gall wasps have evolved strategies to manipulate the developmental pathways of their host to induce gall formation. This provides shelter and nutrients for the developing larva. Galls are entirely host tissue; however, the initiation, development... Read More about Comparative transcriptome reprogramming in oak galls containing asexual or sexual generations of gall wasps.

Reproducible isolation of bovine mammary macrophages for analysis of host pathogen interactions (2024)
Journal Article
Tomes, A., Archer, N., & Leigh, J. (2024). Reproducible isolation of bovine mammary macrophages for analysis of host pathogen interactions. BMC Veterinary Research, 20, Article 96. https://doi.org/10.1186/s12917-024-03944-w

Background: Macrophages residing in milk are vital during intramammary infections. This study sought to develop a method enabling the investigation of macrophage responses to pathogens. Streptococcus uberis is the predominant cause of bovine mastitis... Read More about Reproducible isolation of bovine mammary macrophages for analysis of host pathogen interactions.

The importance of m6A topology in chicken embryo mRNA: a precise mapping of m6A at the conserved chicken β-actin zipcode (2023)
Journal Article
Baron, F., Zhang, M., Archer, N., Bellows, E., Knight, H. M., Welham, S., …Bodi, Z. (2023). The importance of m6A topology in chicken embryo mRNA: a precise mapping of m6A at the conserved chicken β-actin zipcode. RNA, 29(6), 777-789. https://doi.org/10.1261/rna.079615.123

N6-methyladenosine (m6A) in mRNA regulates almost every stage in the mRNA life cycle, and the development of methodologies for the high-throughput detection of methylated sites in mRNA using m6A-specific methylated RNA immunoprecipitation with next-g... Read More about The importance of m6A topology in chicken embryo mRNA: a precise mapping of m6A at the conserved chicken β-actin zipcode.

The METTL3 RNA Methyltransferase Regulates Transcriptional Networks in Prostate Cancer (2022)
Journal Article
Haigh, D. B., Woodcock, C. L., Lothion-Roy, J., Harris, A. E., Metzler, V. M., Persson, J. L., …Mongan, N. P. (2022). The METTL3 RNA Methyltransferase Regulates Transcriptional Networks in Prostate Cancer. Cancers, 14(20), Article 5148. https://doi.org/10.3390/cancers14205148

Prostate cancer (PCa) is a leading cause of cancer-related deaths and is driven by aberrant androgen receptor (AR) signalling. For this reason, androgen deprivation therapies (ADTs) that suppress androgen-induced PCa progression either by preventing... Read More about The METTL3 RNA Methyltransferase Regulates Transcriptional Networks in Prostate Cancer.

CMTr cap-adjacent 2′-O-ribose mRNA methyltransferases are required for reward learning and mRNA localization to synapses (2022)
Journal Article
Haussmann, I. U., Wu, Y., Nallasivan, M. P., Archer, N., Bodi, Z., Hebenstreit, D., …Soller, M. (2022). CMTr cap-adjacent 2′-O-ribose mRNA methyltransferases are required for reward learning and mRNA localization to synapses. Nature Communications, 13(1), Article 1209. https://doi.org/10.1038/s41467-022-28549-5

Cap-adjacent nucleotides of animal, protist and viral mRNAs can be O-methylated at the 2`position of the ribose (cOMe). The functions of cOMe in animals, however, remain largely unknown. Here we show that the two cap methyltransferases (CMTr1 and CMT... Read More about CMTr cap-adjacent 2′-O-ribose mRNA methyltransferases are required for reward learning and mRNA localization to synapses.

Modeling Enzyme Processivity Reveals that RNA-Seq Libraries Are Biased in Characteristic and Correctable Ways (2016)
Journal Article
Archer, N., Walsh, M. D., Shahrezaei, V., & Hebenstreit, D. (2016). Modeling Enzyme Processivity Reveals that RNA-Seq Libraries Are Biased in Characteristic and Correctable Ways. Cell Systems, 3(5), 467-479. https://doi.org/10.1016/j.cels.2016.10.012

© 2016 The Author(s) Experimental procedures for preparing RNA-seq and single-cell (sc) RNA-seq libraries are based on assumptions regarding their underlying enzymatic reactions. Here, we show that the fairness of these assumptions varies within libr... Read More about Modeling Enzyme Processivity Reveals that RNA-Seq Libraries Are Biased in Characteristic and Correctable Ways.