Skip to main content

Research Repository

Advanced Search

All Outputs (12)

Real-time Bayesian inversion in resin transfer moulding using neural surrogates (2024)
Journal Article
Causon, M., Iglesias, M., Matveev, M., Endruweit, A., & Tretyakov, M. (2024). Real-time Bayesian inversion in resin transfer moulding using neural surrogates. Composites Part A: Applied Science and Manufacturing, 185, Article 108355. https://doi.org/10.1016/j.compositesa.2024.108355

In Resin Transfer Moulding (RTM), local variations in reinforcement properties (porosity and permeabil-ity) and the formation of gaps along the reinforcement edges result in non-uniform resin flow patterns, which may cause defects in the produced com... Read More about Real-time Bayesian inversion in resin transfer moulding using neural surrogates.

Benchmark exercise on image-based permeability determination of engineering textiles: Microscale predictions (2023)
Journal Article
Syerko, E., Schmidt, T., May, D., Binetruy, C., Advani, S., Lomov, S., …Vorobyev, R. (2023). Benchmark exercise on image-based permeability determination of engineering textiles: Microscale predictions. Composites Part A: Applied Science and Manufacturing, 167, Article 107397. https://doi.org/10.1016/j.compositesa.2022.107397

Permeability measurements of engineering textiles exhibit large variability as no standardization method currently exists; numerical permeability prediction is thus an attractive alternative. It has all advantages of virtual material characterization... Read More about Benchmark exercise on image-based permeability determination of engineering textiles: Microscale predictions.

Controlling resin flow in Liquid Composite Moulding processes through localized irradiation with ultraviolet light (2022)
Journal Article
Endruweit, A., Matveev, M., & Tretyakov, M. V. (2022). Controlling resin flow in Liquid Composite Moulding processes through localized irradiation with ultraviolet light. Polymer Composites, 43(11), 8308-8321. https://doi.org/10.1002/pc.27001

A vacuum infusion process was implemented to produce composite specimens from a random glass filament mat and an acrylic modified polyester resin curable upon irradiation with ultraviolet (UV) light. Through localized irradiation with UV light during... Read More about Controlling resin flow in Liquid Composite Moulding processes through localized irradiation with ultraviolet light.

Meso-scale optimisation of 3D composites and novel preforming technologies (2019)
Presentation / Conference Contribution
Matveev, M., Long, A., & Brown, L. (2019). Meso-scale optimisation of 3D composites and novel preforming technologies.

Various 3D woven composites have been studied and used in last several decades. It was demonstrated that these composites can have better delamination and impact resistance than conventional laminates. However, most of the 3D woven reinforcements hav... Read More about Meso-scale optimisation of 3D composites and novel preforming technologies.

A numerical study of variability in the manufacturing process of thick composite parts (2018)
Journal Article
Matveev, M., Belnoue, J.-H., Nixon-Pearson, O., Ivanov, D., Long, A., Hallett, S., & Jones, I. (2019). A numerical study of variability in the manufacturing process of thick composite parts. Composite Structures, 208, 23-32. https://doi.org/10.1016/j.compstruct.2018.09.092

Experiments show that different processing conditions lead to different levels of compaction and variability in the thickness. This paper presents an analysis of processing conditions and their effects on consolidation of thick composite components.... Read More about A numerical study of variability in the manufacturing process of thick composite parts.

Uncertainty in geometry of fibre preforms manufactured with Automated Dry Fibre Placement and its effects on permeability (2017)
Journal Article
Matveev, M. Y., Ball, F. G., Jones, I. A., Long, A. C., Schubel, P. J., & Tretyakov, M. V. (2018). Uncertainty in geometry of fibre preforms manufactured with Automated Dry Fibre Placement and its effects on permeability. Journal of Composite Materials, 52(16), 2255-2269. https://doi.org/10.1177/0021998317741951

© 2017, The Author(s) 2017. Resin transfer moulding is one of several processes available for manufacturing fibre-reinforced composites from dry fibre reinforcement. Recently, dry reinforcements made with Automated Dry Fibre Placement have been intro... Read More about Uncertainty in geometry of fibre preforms manufactured with Automated Dry Fibre Placement and its effects on permeability.

Effect of yarn cross-sectional shape on resin flow through inter-yarn gaps in textile reinforcements (2017)
Journal Article
Endruweit, A., Zeng, X., Matveev, M. Y., & Long, A. C. (2018). Effect of yarn cross-sectional shape on resin flow through inter-yarn gaps in textile reinforcements. Composites Part A: Applied Science and Manufacturing, 104, https://doi.org/10.1016/j.compositesa.2017.10.020

Axial flow through gaps between aligned straight yarns with realistic cross-sectional shapes, described by power-ellipses, was analysed numerically. At a given fibre volume fraction, equivalent gap permeabilities have a maximum at minimum size of elo... Read More about Effect of yarn cross-sectional shape on resin flow through inter-yarn gaps in textile reinforcements.

Effects of layer shift and yarn path variability on mechanical properties of a twill weave composite (2016)
Journal Article
Matveev, M. Y., Long, A. C., Brown, L. P., & Jones, I. A. (in press). Effects of layer shift and yarn path variability on mechanical properties of a twill weave composite. Journal of Composite Materials, https://doi.org/10.1177/0021998316655870

Experimental and numerical analysis of a woven composite were performed in order to assess the effect of yarn path and layer shift variability on properties of the composite. Analysis of the geometry of a 12K carbon fibre 2×2 twill weave at the meso-... Read More about Effects of layer shift and yarn path variability on mechanical properties of a twill weave composite.

Geometrical modelling of 3D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties (2013)
Journal Article
Zeng, X., Brown, L. P., Endruweit, A., Matveev, M., & Long, A. C. (2014). Geometrical modelling of 3D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties. Composites Part A: Applied Science and Manufacturing, 56, 150-160. https://doi.org/10.1016/j.compositesa.2013.10.004

For a 3D orthogonal carbon fibre weave, geometrical parameters characterising the unit cell were quantified using micro-Computed Tomography and image analysis. Novel procedures for generation of unit cell models, reflecting systematic local variation... Read More about Geometrical modelling of 3D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties.