Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Tailoring the degradation rate of magnesium through biomedical nano-porous titanate coatings (2020)
Journal Article
Wadge, M. D., McGuire, J., Hanby, B. V., Felfel, R. M., Ahmed, I., & Grant, D. M. (2021). Tailoring the degradation rate of magnesium through biomedical nano-porous titanate coatings. Journal of Magnesium and Alloys, 9(1), 336-350. https://doi.org/10.1016/j.jma.2020.07.001

A novel approach was developed to reduce the corrosion rate of magnesium (Mg) metal, utilising titanate coatings. Magnetron sputtering was used to deposit ca. 500 nm titanium (Ti) coatings onto pure Mg discs, followed by hydrothermal conversion and i... Read More about Tailoring the degradation rate of magnesium through biomedical nano-porous titanate coatings.

Production of High Silicon-Doped Hydroxyapatite Thin Film Coatings via Magnetron Sputtering: Deposition, Characterisation, and In Vitro Biocompatibility (2020)
Journal Article
Coe, S. C., Wadge, M. D., Felfel, R. M., Ahmed, I., Walker, G. S., Scotchford, C. A., & Grant, D. M. (2020). Production of High Silicon-Doped Hydroxyapatite Thin Film Coatings via Magnetron Sputtering: Deposition, Characterisation, and In Vitro Biocompatibility. Coatings, 10(2), Article 190. https://doi.org/10.3390/coatings10020190

In recent years, it has been found that small weight percent additions of silicon to HA can be used to enhance the initial response between bone tissue and HA. A large amount of research has been concerned with bulk materials, however, only recently... Read More about Production of High Silicon-Doped Hydroxyapatite Thin Film Coatings via Magnetron Sputtering: Deposition, Characterisation, and In Vitro Biocompatibility.

Developing highly nanoporous titanate structures via wet chemical conversion of DC magnetron sputtered titanium thin films (2020)
Journal Article
Wadge, M. D., Turgut, B., Murray, J. W., Stuart, B. W., Felfel, R. M., Ahmed, I., & Grant, D. M. (2020). Developing highly nanoporous titanate structures via wet chemical conversion of DC magnetron sputtered titanium thin films. Journal of Colloid and Interface Science, 566, 271-283. https://doi.org/10.1016/j.jcis.2020.01.073

© 2020 The Authors Titanate structures have been widely investigated as biomedical component surfaces due to their bioactive, osteoinductive and antibacterial properties. However, these surfaces are limited to Ti and its alloys, due to the nature of... Read More about Developing highly nanoporous titanate structures via wet chemical conversion of DC magnetron sputtered titanium thin films.