Skip to main content

Research Repository

Advanced Search

All Outputs (32)

Computational analysis of transport in three-dimensional heterogeneous materials: An OpenFOAM®-based simulation framework (2020)
Journal Article
Boccardo, G., Crevacore, E., Passalacqua, A., & Icardi, M. (2020). Computational analysis of transport in three-dimensional heterogeneous materials: An OpenFOAM®-based simulation framework. Computing and Visualization in Science, 23, Article 4. https://doi.org/10.1007/s00791-020-00321-6

© 2020, The Author(s). Porous and heterogeneous materials are found in many applications from composites, membranes, chemical reactors, and other engineered materials to biological matter and natural subsurface structures. In this work we propose an... Read More about Computational analysis of transport in three-dimensional heterogeneous materials: An OpenFOAM®-based simulation framework.

Generalized multirate models for conjugate transfer in heterogeneous materials (2020)
Journal Article
Municchi, F., & Icardi, M. (2020). Generalized multirate models for conjugate transfer in heterogeneous materials. Physical Review Research, 2(1), Article 013041. https://doi.org/10.1103/PhysRevResearch.2.013041

We propose a novel macroscopic model for conjugate heat and mass transfer between a mobile region, where advective transport is significant, and a set of immobile regions where diffusive transport is dominant. Applying a spatial averaging operator to... Read More about Generalized multirate models for conjugate transfer in heterogeneous materials.

Upscaling Flow and Transport Processes (2019)
Book Chapter
Icardi, M., Boccardo, G., & Dentz, M. (2019). Upscaling Flow and Transport Processes. In F. Toschi, & M. Sega (Eds.), Flowing Matter (137-176). Springer International Publishing. https://doi.org/10.1007/978-3-030-23370-9_5

This chapter deals with flow, transport and reaction processes in porous and heterogeneous media characterised by multiple spatial scales. Although the governing equations, at the micro-scale, are simple (and often linear), complex upscaled (effectiv... Read More about Upscaling Flow and Transport Processes.

Coupled processes in charged porous media: from theory to applications (2019)
Journal Article
Joekar-Niasar, V., Schreyer, L., Sedighi, M., Icardi, M., & Huyghe, J. (2019). Coupled processes in charged porous media: from theory to applications. Transport in Porous Media, 130(1), 183-214. https://doi.org/10.1007/s11242-019-01257-3

Charged porous media are pervasive, and modeling such systems is mathematically and computationally challenging due to the highly coupled hydrodynamic and electrochemical interactions caused by the presence of charged solid surfaces, ions in the flui... Read More about Coupled processes in charged porous media: from theory to applications.

Systematic derivation of hybrid coarse-grained models (2019)
Journal Article
Di Pasquale, N., Hudson, T., & Icardi, M. (2019). Systematic derivation of hybrid coarse-grained models. Physical Review E, 99(1), Article 013303. https://doi.org/10.1103/PhysRevE.99.013303

Molecular dynamics represents a key enabling technology for applications ranging from biology to the development of new materials. However, many real-world applications remain inaccessible to fully-resolved simulations due their unsustainable computa... Read More about Systematic derivation of hybrid coarse-grained models.

Mechanisms of dispersion in a porous medium (2018)
Journal Article
Dentz, M., Icardi, M., & Hidalgo, J. J. (2018). Mechanisms of dispersion in a porous medium. Journal of Fluid Mechanics, 841, https://doi.org/10.1017/jfm.2018.120

This paper studies the mechanisms of dispersion in the laminar flow through the pore space of a three-dimensional porous medium. We focus on preasymptotic transport prior to the asymptotic hydrodynamic dispersion regime, in which solute motion may be... Read More about Mechanisms of dispersion in a porous medium.

Effect of wettability on two-phase quasi-static displacement: validation of two pore scale modeling approaches (2018)
Journal Article
Verma, R., Icardi, M., & Prodanovic, M. (2018). Effect of wettability on two-phase quasi-static displacement: validation of two pore scale modeling approaches. Journal of Contaminant Hydrology, 212, https://doi.org/10.1016/j.jconhyd.2018.01.002

Abstract Understanding of pore-scale physics for multiphase flow in porous media is essential for accurate description of various flow phenomena. In particular, capillarity and wettability strongly influence capillary pressure-saturation and relative... Read More about Effect of wettability on two-phase quasi-static displacement: validation of two pore scale modeling approaches.

A robust upscaling of the effective particle deposition rate in porous media (2017)
Journal Article
Boccardo, G., Crevacore, E., Sethi, R., & Icardi, M. (2018). A robust upscaling of the effective particle deposition rate in porous media. Journal of Contaminant Hydrology, 212, https://doi.org/10.1016/j.jconhyd.2017.09.002

In the upscaling from pore- to continuum (Darcy) scale, reaction and deposition phenomena at the solid-liquid interface of a porous medium have to be represented by macroscopic reaction source terms. The effective rates can be computed, in the case o... Read More about A robust upscaling of the effective particle deposition rate in porous media.

Solving the Klein-Gordon equation using Fourier spectral methods: a benchmark test for computer performance (2015)
Presentation / Conference Contribution
Aseeri, S., Batrašev, O., Icardi, M., Leu, B., Liu, A., Li, N., …Vienne, J. (2015). Solving the Klein-Gordon equation using Fourier spectral methods: a benchmark test for computer performance. In HPC '15 Proceedings of the Symposium on High Performance Computing (182-191)

The cubic Klein-Gordon equation is a simple but non-trivial partial differential equation whose numerical solution has the main building blocks required for the solution of many other partial differential equations. In this study, the library 2DE-CO... Read More about Solving the Klein-Gordon equation using Fourier spectral methods: a benchmark test for computer performance.