Skip to main content

Research Repository

Advanced Search

All Outputs (4)

Drop-on-Demand 3D Printing of Programable Magnetic Composites for Soft Robotics (2024)
Journal Article
Bastola, A., Parry, L., Worsley, R., Ahmed, N., Lester, E., Hague, R., & Tuck, C. (2024). Drop-on-Demand 3D Printing of Programable Magnetic Composites for Soft Robotics. Additive Manufacturing Letters, 11, Article 100250. https://doi.org/10.1016/j.addlet.2024.100250

Soft robotics have become increasingly popular as a versatile alternative to traditional robotics. Magnetic composite materials, which respond to external magnetic fields, have attracted significant interest in this field due to their programmable tw... Read More about Drop-on-Demand 3D Printing of Programable Magnetic Composites for Soft Robotics.

PySLM - Python Library for Selective Laser Melting and Additive Manufacturing (2023)
Digital Artefact
Parry, L. PySLM - Python Library for Selective Laser Melting and Additive Manufacturing. [Software]

PySLM is a Python library for supporting development of input files used in Additive Manufacturing or 3D Printing, in particular Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS) platforms typically used in both academia and industry... Read More about PySLM - Python Library for Selective Laser Melting and Additive Manufacturing.

FLatt Pack: A research-focussed lattice design program (2021)
Journal Article
Maskery, I., Parry, L. A., Padrão, D., Hague, R., & Ashcroft, I. A. (2022). FLatt Pack: A research-focussed lattice design program. Additive Manufacturing, 49, Article 102510. https://doi.org/10.1016/j.addma.2021.102510

Lattice structures are an important aspect of design for additive manufacturing (DfAM). They enable significant component light-weighting and the tailoring of a wide range of physical responses; mechanical, thermal, acoustic, etc. In turn, lattice de... Read More about FLatt Pack: A research-focussed lattice design program.

Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation (2016)
Journal Article
Parry, L., Ashcroft, I., & Wildman, R. D. (2016). Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Additive Manufacturing, 12(A), https://doi.org/10.1016/j.addma.2016.05.014

Selective laser melting (SLM) is an attractive technology, enabling the manufacture of customised, complex metallic designs, with minimal wastage. However, uptake by industry is currently impeded by several technical barriers, such as the control of... Read More about Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation.