Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Reference layer artefact subtraction (RLAS): A novel method of minimizing EEG artefacts during simultaneous fMRI (2013)
Journal Article
Chowdhury, M. E., Mullinger, K. J., Glover, P., & Bowtell, R. W. (2014). Reference layer artefact subtraction (RLAS): A novel method of minimizing EEG artefacts during simultaneous fMRI. NeuroImage, 84, 307-319. https://doi.org/10.1016/j.neuroimage.2013.08.039

Large artefacts compromise EEG data quality during simultaneous fMRI. These artefact voltages pose heavy demands on the bandwidth and dynamic range of EEG amplifiers and mean that even small fractional variations in the artefact voltages give rise to... Read More about Reference layer artefact subtraction (RLAS): A novel method of minimizing EEG artefacts during simultaneous fMRI.

Poststimulus undershoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus neuronal activity (2013)
Journal Article
Mullinger, K. J., Mayhew, S. D., Bagshaw, A. P., Bowtell, R., & Francis, S. T. (2013). Poststimulus undershoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus neuronal activity. Proceedings of the National Academy of Sciences, 110(33), https://doi.org/10.1073/pnas.1221287110

fMRI is the foremost technique for noninvasive measurement of human brain function. However, its utility is limited by an incomplete understanding of the relationship between neuronal activity and the hemodynamic response. Though the primary peak of... Read More about Poststimulus undershoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus neuronal activity.

Identifying the sources of the pulse artefact in EEG recordings made inside an MR scanner (2013)
Journal Article
Mullinger, K. J., Havenhand, J., & Bowtell, R. W. (2013). Identifying the sources of the pulse artefact in EEG recordings made inside an MR scanner. NeuroImage, 71(1), https://doi.org/10.1016/j.neuroimage.2012.12.070

EEG recordings made during concurrent fMRI are confounded by the pulse artefact (PA), which although smaller than the gradient artefact is often more problematic because of its variability over multiple cardiac cycles. A better understanding of the P... Read More about Identifying the sources of the pulse artefact in EEG recordings made inside an MR scanner.