Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Improving crop yield potential: Underlying biological processes and future prospects (2022)
Journal Article
Burgess, A. J., Masclaux‐Daubresse, C., Strittmatter, G., Weber, A. P. M., Taylor, S. H., Harbinson, J., …Baekelandt, A. (2023). Improving crop yield potential: Underlying biological processes and future prospects. Food and Energy Security, 12(1), Article e435. https://doi.org/10.1002/fes3.435

The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant‐derived products. In the coming years, plant‐based research will be among the major drivers ensuring food s... Read More about Improving crop yield potential: Underlying biological processes and future prospects.

Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat (2022)
Journal Article
Kareem, S. H., Hawkesford, M. J., DeSilva, J., Weerasinghe, M., Wells, D. M., Pound, M. P., …Foulkes, M. J. (2022). Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat. European Journal of Agronomy, 140, Article 126603. https://doi.org/10.1016/j.eja.2022.126603

Root system architecture (RSA) is important in optimizing the use of nitrogen. High-throughput phenotyping techniques may be used to study root system architecture traits under controlled environments. A root phenotyping platform, consisting of germi... Read More about Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat.

Prediction of Photosynthetic, Biophysical, and Biochemical Traits in Wheat Canopies to Reduce the Phenotyping Bottleneck (2022)
Journal Article
Robles-Zazueta, C. A., Pinto, F., Molero, G., Foulkes, M. J., Reynolds, M. P., & Murchie, E. H. (2022). Prediction of Photosynthetic, Biophysical, and Biochemical Traits in Wheat Canopies to Reduce the Phenotyping Bottleneck. Frontiers in Plant Science, 13, Article 828451. https://doi.org/10.3389/fpls.2022.828451

To achieve food security, it is necessary to increase crop radiation use efficiency (RUE) and yield through the enhancement of canopy photosynthesis to increase the availability of assimilates for the grain, but its study in the field is constrained... Read More about Prediction of Photosynthetic, Biophysical, and Biochemical Traits in Wheat Canopies to Reduce the Phenotyping Bottleneck.