Skip to main content

Research Repository

Advanced Search

All Outputs (4)

A time-resolved Förster resonance energy transfer assay to investigate drug and inhibitor binding to ABCG2 (2024)
Journal Article
Mitchell-White, J. I., Briggs, D. A., Mistry, S. J., Mbiwan, H. A., Kellam, B., Holliday, N. D., …Kerr, I. D. (2024). A time-resolved Förster resonance energy transfer assay to investigate drug and inhibitor binding to ABCG2. Archives of Biochemistry and Biophysics, 753, Article 109915. https://doi.org/10.1016/j.abb.2024.109915

The human ATP-binding cassette (ABC) transporter, ABCG2, is responsible for multidrug resistance in some tumours. Detailed knowledge of its activity is crucial for understanding drug transport and resistance in cancer, and has implications for wider... Read More about A time-resolved Förster resonance energy transfer assay to investigate drug and inhibitor binding to ABCG2.

A time-resolved Förster resonance energy transfer assay to investigate inhibitor binding to ABCG2 (2023)
Preprint / Working Paper
Mitchell-White, J. I., Briggs, D. A., Mistry, S. J., Mbiwan, H. A., Kellam, B., Holliday, N. D., …Kerr, I. D. A time-resolved Förster resonance energy transfer assay to investigate inhibitor binding to ABCG2

The human ATP-binding cassette (ABC) transporter, ABCG2 is responsible for multidrug resistance in some tumours. Detailed knowledge of its activity is crucial for understanding drug transport and resistance in cancer, and has implications for wider p... Read More about A time-resolved Förster resonance energy transfer assay to investigate inhibitor binding to ABCG2.

Analysis of sequence divergence in mammalian abcgs predicts a structural network of residues that underlies functional divergence (2021)
Journal Article
Mitchell-White, J. I., Stockner, T., Holliday, N., Briddon, S. J., & Kerr, I. D. (2021). Analysis of sequence divergence in mammalian abcgs predicts a structural network of residues that underlies functional divergence. International Journal of Molecular Sciences, 22(6), 1-16. https://doi.org/10.3390/ijms22063012

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. The five members of the mammalian G subfamily of ATP-binding cassette transporters differ greatly in their substrate specificity. Four members of the subfamily are important in lipid transport... Read More about Analysis of sequence divergence in mammalian abcgs predicts a structural network of residues that underlies functional divergence.

11β-Hydroxysteroid Dehydrogenase Type 1 Inhibition in Idiopathic Intracranial Hypertension: A Double-Blind Randomized Controlled Trial (2020)
Journal Article
Tomlinson, J. W., Markey, K., Mitchell, J., Botfield, H., Ottridge, R. S., Lavery, G. G., …Jenkinson, C. (2020). 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibition in Idiopathic Intracranial Hypertension: A Double-Blind Randomized Controlled Trial. Brain Communications, 2(1), Article fcz050. https://doi.org/10.1093/braincomms/fcz050

Treatment options for idiopathic intracranial hypertension are limited. The enzyme 11β-hydroxysteroid dehydrogenase type 1 has been implicated in regulating cerebrospinal fluid secretion, and its activity is associated with alterations in intracrania... Read More about 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibition in Idiopathic Intracranial Hypertension: A Double-Blind Randomized Controlled Trial.