Skip to main content

Research Repository

Advanced Search

All Outputs (12)

Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms (2017)
Journal Article
Ostmann, M., Minář, J., Marcuzzi, M., Levi, E., & Lesanovsky, I. (2017). Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms. New Journal of Physics, 19(12), https://doi.org/10.1088/1367-2630/aa983e

Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss a... Read More about Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms.

Fluctuating hydrodynamics, current fluctuations and hyperuniformity in boundary-driven open quantum chains (2017)
Journal Article
Carollo, F., Garrahan, J. P., Lesanovsky, I., & Pérez-Espigares, C. (2017). Fluctuating hydrodynamics, current fluctuations and hyperuniformity in boundary-driven open quantum chains. Physical Review E, 96(5), Article 052118. https://doi.org/10.1103/PhysRevE.96.052118

We consider a class of either fermionic or bosonic non-interacting open quantum chains driven by dissipative interactions at the boundaries and study the interplay of coherent transport and dissipative processes, such as bulk dephasing and diffusion.... Read More about Fluctuating hydrodynamics, current fluctuations and hyperuniformity in boundary-driven open quantum chains.

Metastable decoherence-free subspaces and electromagnetically induced transparency in interacting many-body systems (2017)
Journal Article
Macieszczak, K., Zhou, Y., Hofferberth, S., Garrahan, J. P., Li, W., & Lesanovsky, I. (2017). Metastable decoherence-free subspaces and electromagnetically induced transparency in interacting many-body systems. Physical Review A, 96(4), Article 043860. https://doi.org/10.1103/PhysRevA.96.043860

We investigate the dynamics of a generic interacting many-body system under conditions of electromagnetically induced transparency (EIT). This problem is of current relevance due to its connection to non-linear optical media realized by Rydberg atoms... Read More about Metastable decoherence-free subspaces and electromagnetically induced transparency in interacting many-body systems.

Phase transitions in electron spin resonance under continuous microwave driving (2017)
Journal Article
Karabanov, A., Rose, D. C., Köckenberger, W., Garrahan, J. P., & Lesanovsky, I. (in press). Phase transitions in electron spin resonance under continuous microwave driving. Physical Review Letters, 119, https://doi.org/10.1103/PhysRevLett.119.150402

We study an ensemble of strongly coupled electrons under continuous microwave irradiation interacting with a dissipative environment, a problem of relevance to the creation of highly polarized non-equilibrium states
in nuclear magnetic resonance. We... Read More about Phase transitions in electron spin resonance under continuous microwave driving.

Topological properties of a dense atomic lattice gas (2017)
Journal Article
Bettles, R. J., Minář, J., Adams, C. S., Lesanovsky, I., & Olmos, B. (2017). Topological properties of a dense atomic lattice gas. Physical Review A, 96(4), Article 041603. https://doi.org/10.1103/PhysRevA.96.041603

We investigate the existence of topological phases in a dense two-dimensional atomic lattice gas. The coupling of the atoms to the radiation field gives rise to dissipation and a non-trivial coherent long-range exchange interaction whose form goes be... Read More about Topological properties of a dense atomic lattice gas.

Experimental signatures of an absorbing-state phase transition in an open driven many-body quantum system (2017)
Journal Article
Gutiérrez, R., Simonelli, C., Archimi, M., Castellucci, F., Arimondo, E., Ciampini, D., …Morsch, O. (2017). Experimental signatures of an absorbing-state phase transition in an open driven many-body quantum system. Physical Review A, 96(4), Article 041602(R). https://doi.org/10.1103/PhysRevA.96.041602

Understanding and probing phase transitions in non-equilibrium systems is an ongoing challenge in physics. A particular instance are phase transitions that occur between a non-fluctuating absorbing phase, e.g., an extinct population, and one in which... Read More about Experimental signatures of an absorbing-state phase transition in an open driven many-body quantum system.

Epidemic dynamics in open quantum spin systems (2017)
Journal Article
Perez-Espigares, C., Marcuzzi, M., Gutierrez, R., & Lesanovsky, I. (2017). Epidemic dynamics in open quantum spin systems. Physical Review Letters, 119(14), 1-6. https://doi.org/10.1103/PhysRevLett.119.140401

We explore the non-equilibrium evolution and stationary states of an open many-body system which displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by recent experiments conducted in strongly interacting... Read More about Epidemic dynamics in open quantum spin systems.

Effective spin physics in two-dimensional cavity QED arrays (2017)
Journal Article
Minář, J., Söyler, Ş. G., Rotondo, P., & Lesanovsky, I. (2017). Effective spin physics in two-dimensional cavity QED arrays. New Journal of Physics, 19, https://doi.org/10.1088/1367-2630/aa753c

We investigate a strongly correlated system of light and matter in two-dimensional cavity arrays. We formulate a multimode Tavis–Cummings (TC) Hamiltonian for two-level atoms coupled to cavity modes and driven by an external laser field which reduces... Read More about Effective spin physics in two-dimensional cavity QED arrays.

Single strontium Rydberg ion confined in a Paul trap (2017)
Journal Article
Higgins, G., Li, W., Pokorny, F., Zhang, C., Kress, F., Maier, C., …Hennrich, M. (2017). Single strontium Rydberg ion confined in a Paul trap. Physical Review X, 7(2), Article 021038. https://doi.org/10.1103/PhysRevX.7.021038

Trapped Rydberg ions are a promising new system for quantum information processing. They have the potential to join the precise quantum operations of trapped ions and the strong, long-range interactions between Rydberg atoms. Combining the two system... Read More about Single strontium Rydberg ion confined in a Paul trap.

Facilitation dynamics and localization phenomena in Rydberg lattice gases with position disorder (2017)
Journal Article
Marcuzzi, M., Minář, J., Barredo, D., Léséleuc, S. D., Labuhn, H., Lahaye, T., …Lesanovsky, I. (2017). Facilitation dynamics and localization phenomena in Rydberg lattice gases with position disorder. Physical Review Letters, 118(6-10), Article 063606. https://doi.org/10.1103/PhysRevLett.118.063606

We explore the dynamics of Rydberg excitations in an optical tweezer array under anti-blockade (or facilitation) conditions. Due to the finite temperature the atomic positions are randomly spread, an effect that leads to quenched correlated disorder... Read More about Facilitation dynamics and localization phenomena in Rydberg lattice gases with position disorder.

Nonequilibrium effective field theory for absorbing state phase transitions in driven open quantum spin systems (2017)
Journal Article
Buchhold, M., Everest, B., Marcuzzi, M., Lesanovsky, I., & Diehl, S. (2017). Nonequilibrium effective field theory for absorbing state phase transitions in driven open quantum spin systems. Physical Review B, 95, https://doi.org/10.1103/PhysRevB.95.014308

Phase transitions to absorbing states are among the simplest examples of critical phenomena out of equilibrium. The characteristic feature of these models is the presence of a fluctuationless configuration which the dynamics cannot leave, which has p... Read More about Nonequilibrium effective field theory for absorbing state phase transitions in driven open quantum spin systems.

Role of interactions in a dissipative many-body localized system (2017)
Journal Article
Everest, B., Lesanovsky, I., Garrahan, J. P., & Levi, E. (2017). Role of interactions in a dissipative many-body localized system. Physical Review B, 95(2), https://doi.org/10.1103/PhysRevB.95.024310

Recent experimental and theoretical efforts have focused on the effect of dissipation on quantum many-body systems in their many-body localized (MBL) phase. While in the presence of dephasing noise such systems reach a unique ergodic state, their dyn... Read More about Role of interactions in a dissipative many-body localized system.