Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles (2020)
Journal Article
Jain, A., Trindade, G. F., Hicks, J. M., Potts, J. C., Rahman, R., J. M. Hague, R., …Rawson, F. J. (2021). Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles. Journal of Colloid and Interface Science, 587, 150-161. https://doi.org/10.1016/j.jcis.2020.12.025

Protein orientation in nanoparticle-protein conjugates plays a crucial role in binding to cell receptors and ultimately, defines their targeting efficiency. Therefore, understanding fundamental aspects of the role of protein orientation upon adsorpti... Read More about Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles.

Top-Down Characterization of an Antimicrobial Sanitizer, Leading From Quenchers of Efficacy to Mode of Action (2020)
Journal Article
Wohlgemuth, F., Gomes, R. L., Singleton, I., Rawson, F. J., & Avery, S. V. (2020). Top-Down Characterization of an Antimicrobial Sanitizer, Leading From Quenchers of Efficacy to Mode of Action. Frontiers in Microbiology, 11, Article 575157. https://doi.org/10.3389/fmicb.2020.575157

© Copyright © 2020 Wohlgemuth, Gomes, Singleton, Rawson and Avery. We developed a top-down strategy to characterize an antimicrobial, oxidizing sanitizer, which has diverse proposed applications including surface-sanitization of fresh foods, and with... Read More about Top-Down Characterization of an Antimicrobial Sanitizer, Leading From Quenchers of Efficacy to Mode of Action.

Modulating the Biological Function of Protein by Tailoring the Adsorption Orientation on Nanoparticles (2020)
Other
Jain, A., Trindade, G., Hicks, J. M., Potts, J. C., Rahman, R., Hague, R., …Rawson, F. Modulating the Biological Function of Protein by Tailoring the Adsorption Orientation on Nanoparticles

Protein orientation in nanoparticle-protein conjugates plays a crucial role in binding to cell receptors and ultimately, defines their targeting efficiency. Therefore, understanding fundamental aspects of the role of protein orientation upon adsorpti... Read More about Modulating the Biological Function of Protein by Tailoring the Adsorption Orientation on Nanoparticles.

Mass transport of lipopolysaccharide induced H<inf>2</inf>O<inf>2</inf> detected by an intracellular carbon nanoelectrode sensor (2020)
Journal Article
Hicks, J., Silman, N. J., Jackson, S., Aylott, J., & Rawson, F. (2020). Mass transport of lipopolysaccharide induced H2O2 detected by an intracellular carbon nanoelectrode sensor. Bioelectrochemistry, 135, Article 107547. https://doi.org/10.1016/j.bioelechem.2020.107547

Hydrogen peroxide is a key component of the innate immune response, regulating how a cell responds to a bacterial threat; however, being transient in nature makes it extremely difficult to detect. We show the development of an improved biosensor capa... Read More about Mass transport of lipopolysaccharide induced H<inf>2</inf>O<inf>2</inf> detected by an intracellular carbon nanoelectrode sensor.

Iron Catalysed Radical Polymerisation by Living Bacteria (2020)
Journal Article
Bennett, M., Gurnani, P., Alexander, C., Hill, P., & Rawson, F. J. (2020). Iron Catalysed Radical Polymerisation by Living Bacteria. Angewandte Chemie International Edition, 59(12), 4750-4755. https://doi.org/10.1002/anie.201915084

The ability to harness cellular redox processes for abiotic synthesis might allow the preparation of engineered hybrid living systems. Towards this goal, we describe a new bacteria‐mediated Iron‐catalysed Reversible Deactivation Radical Polymerisatio... Read More about Iron Catalysed Radical Polymerisation by Living Bacteria.